COMPSs

COMPSs Manual

Workflows and Distributed Computing Group

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

Last updated : November, 2020

Online version available at COMPSs - ReadTheDocs


https://compss-doc.readthedocs.io/en/latest/

Table of contents

Table of contents

List of figures

List of tables

1 What is COMPSs?

2 Quickstart

2.1 Imstall COMPSs . . . . . e
2.2 Write your first app . . . . . . ..
2.3 Useful information . . . . . . . . . e

3 Installation and Administration

3.1 Dependencies . . . . . . . . e e e
3.1.1 Build Dependencies . . . . . . . .. e e e
3.1.2 Optional Dependencies . . . . . . . . . . . .

3.2 Building from sources . . . . . ..
3.2.1 Postinstallation . . . . . . .. Lo

3.3 PIp . o s
3.3.1 Prerequisites . . . . . .. L e
3.3.2 Imstallation . . . . . . . L e
3.3.3 Post installation . . . . . . . ...

3.4 Supercomputers . . . . . ... e e
3.4.1 Prerequisites . . . . . . . L e
3.4.2 Imstallation . . . . . . oL
3.4.3 Configuration . . . . . . ...
3.4.4 Post installation . . . . . . ...

3.5 Additional Configuration . . . . . . . . . . L
3.5.1 Configure SSH passwordless . . . . . . . . . .. L
3.5.2  Configure the COMPSs Cloud Connectors . . . . . . . . . . ... v

3.6 Configuration Files . . . . . . . . . e
3.6.1 Resourcesfile . . . . . . . . e
3.6.2 Project file . . . . ..
3.6.3 Configuration examples . . . . . . . . L L

4 Application development

A1 Java ... e s
4.1.1 Programming Model . . . . . . . . . . e
4.1.2  Application Compilation . . . . . . . . ...
4.1.3 Application Execution . . . . . . . . . ..

4.2 Python Binding . . . . . . . . oL
4.2.1 Programming Model . . . . . . . .. L




4.2.2 Application Execution . . . . . . . . ... 80

4.2.3 Integration with Jupyter notebook . . . . . . ... oo 81
4.2.4 Integration with Numba . . . . . . . . ... . o 83
4.3 C/CH+ Binding . . . . . . oo 84
4.3.1 Programming Model . . . . . . . . .. 84
4.3.2 Use of programming models inside tasks . . . . . . . . ... L oo oo 91
4.3.3 Application Compilation . . . . . . . . . . L 92
4.3.4 Application Execution . . . . . . . ..o 95
4.3.5 Task Dependency Graph . . . . . . . . . . .. e 95
4.4 Constraints . . . . . . .. e e 96
Execution Environments 99
5.1 Local . . . . o o e 99
5.1.1 Executing COMPSs applications . . . . . . . . . .. 99
5.1.2 Resultsand logs . . . . . . . L 105
5.1.3  COMPSs Tools . . . . . . o e e 109
5.2 Supercomputers . . . . . . ... oL e 115
5.2.1  Common USAZE . . « . v v v v vt e e e e e e e 115
5.2.2 MareNostrum 4 . . . . . . . oL e 122
5.2.3 MinoTauro . . . . . . . oL e e 123
5.2.4 Nord 3. . . . . e e 124
5.2.5 Enabling COMPSs Monitor . . . . . . . .. .. . e 126
5.3 Docker . . . . L e 126
5.3.1 What is Docker? . . . . . . . . e 126
5.3.2 Requirements . . . . . . .. L e 128
5.3.3 Execution in Docker . . . . . . . ..o 128
5.3.4 Execution with TLS . . . . . . . . . . . e 130
5.3.50 Execution results . . . . . . ... 130
5.3.6 Execution examples . . . . . ..o 130
5.4 Chameleon . . . . . . . 132
5.4.1 What is Chameleon? . . . . . . . . . . e 132
5.4.2 Execution in Chameleon . . . . . . . . . . . . . e 132
5.5 Dynamic infrastructures . . . . . . ... oL 132
5.5.1 What are COMPSs Agents? . . . . . . . . . . 133
5.5.2 Deploying a COMPSs Agent . . . . . . . . . e 134
5.5.3 Executing an operation . . . . . . . .. Lo 135
5.5.4 Modifying the available resources . . . . . . . . . . . ... 136
Tracing 139
6.1 COMPSs applications tracing . . . . . . . . . . . . L 139
6.1.1 Basic Mode . . . . . . . . . e e 140
6.1.2 Advanced Mode . . . . . . .. e e 143
6.1.3 Custom Installation and Configuration . . . . . . .. . ... ... ... ... 144
6.2 Visualization . . . . . . . L e 145
6.2.1 Trace Loading . . . . . . . . . e 146
6.2.2  Configurations . . . . . . . . . L e 146
6.2.3 View Adjustment . . . . . .. 147
6.3 Interpretation . . . . . . . . L L e 148
6.4 Analysis . . . . . L 149
6.4.1 Graphical Analysis . . . . . . . . .. 149
6.4.2 Numerical Analysis . . . . . . . . . . . e 150
6.5 PAPIL: Hardware Counters . . . . . . . . . . . . . . e 152
6.6 Paraver: configurations. . . . . . . ... oL L 153
6.7 User Events in Python . . . . . . . . . . . 0 154
6.7.1 Eventsin main code . . . . . . . . Lo e 154
6.7.2 Eventsintaskcode. . . . . . . .. e 155
6.7.3 Result trace . . . . . . . L e e 156

6.7.4 Practical example . . . . ... 156



7 Persistent Storage

7.1

7.2

7.3

7.4

7.5

First steps . . . . o o o e s
7.1.1 Defining the data model . . . . . . . .. .. Lo
7.1.2 Interacting with the persistent storage . . . . . . . . .. ... L L.
7.1.3 Running with persistent storage . . . . .. ... L o
COMPSs + dataClay . . . . . . . . o e e e
7.2.1 COMPSs + dataClay Dependencies . . . . . . . . . . . . . . ... ...
7.2.2 Enabling COMPSs applications with dataClay . . . . .. .. ... ... ... ... .....
7.2.3 Executing a COMPSs application with dataClay . . . . ... ... ... .. ... ... ...
COMPSs + Hecuba . . . . . . o0 e
7.3.1 COMPSs + Hecuba Dependencies . . . . . . . .. . . o
7.3.2 Enabling COMPSs applications with Hecuba . . . . . . . ... ... ... ... .......
7.3.3 Executing a COMPSs application with Hecuba . . . . . . . . ... .. .. ... ... ....
COMPSs + Redis . . . . . . o e
7.4.1 COMPSs + Redis Dependencies . . . . . . . .. .. .
7.4.2 Enabling COMPSs applications with Redis . . . . . .. .. .. ... ... ... ...
7.4.3 Executing a COMPSs application with Redis . . . . . . . ... ... ... ... ... ....
Implement your own Storage interface for COMPSs . . . . . . . .. ... . ... .. ...
7.5.1 Generic Storage Object Interface . . . . . . . . . . . ... Lo
7.5.2  Generic Storage Runtime Interfaces . . . . . . .. .. .. oo oL
7.5.3 Storage Interface usage . . . . . . ..

8 Sample Applications

8.1

8.2

8.3

Java Sample applications . . .. ... .. .. ..
811 HelloWorld . . .. ... ... ... ....
812 Simple . . ... ... ... ... ......
81.3 Increment . . ... ... ..........
8.1.4 Matrix multiplication . . .. ... .. ..
8.1.5 Sparse LU decomposition . . ... .. ..
8.1.6 BLAST Workflow . ... .........
Python Sample applications . . . . . .. ... ..
821 Simple . .. ... ... ... ... .
82.2 Increment . . ... ... ..........
823 Kmeans . ... .. ... ... ... ...
8.2.4 Kmeans with Persistent Storage . . . . .
825 Matmul . .. ... ... Lo
8.2.6 Lysozyme in water . . . .. ... ... ..
C/C++ Sample applications . . . . .. ... ..
83.1 Simple . . ... ... ... ... ...
8.3.2 Increment . . ... ... ... . ......

9 PyCOMPSs Player

9.1

9.2

Requirements and Installation . . . . . . . . . . . L L
9.1.1 Requirements . . . . . . . . ..o e e
9.1.2 Imstallation . . . . . . . . L e
Usage . . . . o o e e
9.2.1 Start COMPSs infrastructure in your development directory . . . . . . . . . ... ... ...
9.2.2 Running applications . . . . . . . . ..
9.2.3 Running the COMPSs monitor . . . . . . . .. ... L
9.2.4 Running Jupyter notebooks . . . . .. ..o L
9.2.5 Generating the task graph . . . . . . . . . ...
9.2.6 Tracing applications or notebooks . . . . . . ... L Lo
9.2.7 Adding more nodes . . . . ...
9.2.8 Removing existing nodes . . . . . ... L L L
9.2.9  StOp PYCOMPSS . .+« v v v i e e e e e

10 PyCOMPSs Notebooks
10.1 Syntax . . . . . . ..o

10.1.1 Basics of programming with PyCOMPSs



10.1.2 PyCOMPSs: Synchronization . . . . . . . . . . . . . . . i 235

10.1.3 PyCOMPSs: Using objects, lists, and synchronization . . . .. .. ... ... .. ... ... 238
10.1.4 PyCOMPSs: Using objects, lists, and synchronization . . . . . .. ... ... ... ..... 240
10.1.5 PyCOMPSs: Using objects, lists, and synchronization. Using collections. . . . . . ... .. 243
10.1.6 PyCOMPSs: Using objects, lists, and synchronization. Managing fault-tolerance. . . . . . . 247
10.1.7 PyCOMPSs: Using files . . . . . . . . . . . e 250
10.1.8 PyCOMPSs: Using constraints . . . . . . . . .. . . . 0 e 252
10.1.9 PyCOMPSs: Polymorphism . . . . . . . . ... o 254
10.1.10PyCOMPSs: Other decorators - Binary . . . . . . . . .. oo i it 257
10.1.11 PyCOMPSs: Integration with Numba . . . . . . . .. .. ... . . ... ... 259
10.1.12Dislib tutorial . . . . . . . ..o 262
10.1.13 Machine Learning with dislib . . . . . . . . . . . o o 268

10.2 Hands-on . . . . . . o . e e e e e e 273
10.2.1 Sort by Key . . . . . . o e 273
10.2.2 KMeans . . . . . . . oL e 276
10.2.3 KMeans with Reduce . . . . . . . . . . . 280
10.2.4 Cholesky Decomposition/Factorization . . . . . . . . ... .. . . Lo 285
10.2.5 Wordcount Exercise . . . . . . . . . . 288
10.2.6 Wordcount Solution . . . . . . . . . . L 290
10.2.7 Wordcount Solution (With reduce) . . . . . . .. ... .. o 293

10.3 Demos . . . o o e 296
10.3.1 Accelerating parallel code with PyCOMPSs and Numba . . . . . . ... .. ... ... ... 296

11 Troubleshooting 305
11.1 How todebug . . . . . . . . e e 305
11.1.1 Java examples . . . . . . oL e e e 306
11.1.2 Python examples . . . . . . . . . . L 306
11.1.3 C/C++examples . . . . . oo i e 309

11.2 Common Issues . . . . . . . o . o e 309
11.2.1 Tasks are not executed . . . . . . . . . ... L 309
11.2.2 Jobs fail . . . . . L e 310
11.2.3 Exceptions when starting the Worker processes . . . . . . . . . . ... ... ... 310
11.2.4 Compilation error: @Method not found . . . . . . . . ... ... L 310
11.2.5 Jobs failed on method reflection . . . . . . . . .. ..o 311
11.2.6 Jobs failed on reflect target invocation null pointer . . . . . . . . . ... ... .. 312
11.2.7 Tracing merge failed: too many open files . . . . . .. . . ... oL L. 312

11.3 Known Limitations . . . . . . . . . . . . e e e 314
11.3.1 Global . . . . . e e 314
11.3.2 With Java Applications . . . . . . . .. . . L 314
11.3.3 With Python Applications . . . . . . . . . . .. e 315

11.3.4 With Services . . . . . . . . . e 316



List of figures

[\

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The dependency graph of the increment application . . . . . . .. .. ... ... ... ....... 14
Trace of the increment application . . . . . . . . . . .. L 15
Matmul Execution Graph. . . . . . . . ... e 20
Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange

system dependant scripts . . . . . L. oL oL Lo e e 30
Cluster example . . . . . . . . . e 39
Matmul Execution Graph. . . . . . . . . .. e 96
Output generated by the execution of the Simple Java application with COMPSs . . . . . . . . .. 105
Sequential execution of the Hello java application . . . . . . . . . .. ... ... ... ..., 106
COMPSs execution of the Hello java application . . . . . . . . .. ... ... ... .... 106
Structure of the logs folder for the Simple java application in off mode . . . . . . . ... ... ... 107
Structure of the logs folder for the Simple java application in info mode . . . . . . ... ... ... 107
runtime.log generated by the execution of the Simple java application . . . . ... ... ... ... 107
resources.log generated by the execution of the Simple java application . . . . . . ... .. ... .. 108
Structure of the logs folder for the Simple java application in debug mode . . . . . . ... .. .. 108
The dependency graph of the SparseLLU application . . . . . . ... ... ... ... ... ..., 109
COMPSs Monitor start command . . . . . . . . . . .. .. 110
COMPSs monitoring interface . . . . . . . . .. L L 111
Logs generated by the Simple java application with the monitoring flag enabled . . . . . . . . . .. 112
COMPSs Monitor login for Supercomputers . . . . . . . . . ... . oo 127
COMPSs Monitor main page for a test application at Supercomputers . . . . . .. ... ... ... 127
Result and log folders of a Matmul execution with COMPSs and Docker . . . . . . ... ... ... 131
Basic mode tracefile for a k-means algorithm visualized with compss runtime.cfg . . . . . . .. .. 143
Advanced mode tracefile for a testing program showing the total completed instructions . . . . . . 145
Paraver menu . . . . .. Lo e 146
Trace file . . . . . L e e e 146
Paraver view adjustment: Fit window . . . . . . . . ... L Lo 147
Paraver view adjustment: View Event Flags . . . . . . ... .. ... oo oo 147
Paraver view adjustment: Show info panel . . . . . . . . . ... o0 Lo 147
Paraver view adjustment: Zoom configuration . . . . . . . ... ... L 148
Paraver view adjustment: Zoom configuration . . . . . . .. ... oL L Lo 148
Trace interpretation . . . . . . . . oL e 148
Basic trace view of a Hmmpfam execution. . . . . .. .. ... . oo oo 149
Data dependencies graph of a Hmmpfam execution. . . . . . ... ... ... ... ... .. .... 149
Zoomed in view of a Hmmpfam execution. . . . . . . . .. .. . oo 150
Original sample trace interval corresponding to the obtained Histogram. . . . . . . ... ... ... 150
Paraver Menu - New Histogram . . . . . . . . . .. .. . o L Lo 150
Hmmpfam histogram corresponding to previous trace. . . . . . . . . . . .. ... L. 151
Paraver histogram options menu . . . . . .. ..o Lo 151




39
40

41

42
43
44
45
46
47
48
49
50
51

Hmmpfam histogram with the number of bursts. . . . . . . . . ... ... ... .. ... ...... 152

User events trace file . . . . . . . . . e 157
COMPSs with persistent storage architecture . . . . . . . . .. ... L L oL 159
Java increment tasks graph . . . ... oL oL 185
Matrix multiplication . . . . . . . . . Lo e 185
Sparse LU decomposition . . . . . . . . L e 187
The COMPSs Blast workflow . . . . . . . . . . . .. 189
Python increment tasks graph . . . . . . .. Lo 193
Python kmeans tasks graph . . . . . . . .. L 199
Python matrix multiplication tasks graph . . . . . .. .. .. Lo oo 208
Python Lysozyme in Water tasks graph . . . . . . . . . . .. . . . 214
Ixyw Potential result (plotted with GRACE) . . . . . . .. . .. . 216

Cincrement tasks graph . . . . . . . . Lo 225



List of tables

N O U W N

10
11
12
13
14
15

16
17
18

19
20
21
22
23
24

COMPSs dependencies . . . . . . . . . 0 e e e 21
Connector supported properties in the project.xml file . . . . .. .. .. ... .. ... ... ... 47
Properties supported by any SSH based connector in the project.xml file . . . . . ... ... ... 47
rOCCI extensions in the project.xml file . . . . . . . . . .. .. ... oo oL 48
Configuration of the <resources>.xml templates file . . . . . . . ... ... ... ... ... ..., 48
JClouds extensions in the <project>.xml file . . . . . . ... ... ... oo oL 48
Mesos connector options in the <project>.xml file . . . . . . . . . ... ... . o oL, 49
Arguments of the @task decorator . . . . . . . . . ... 66
Supported StdIOStreams for the @binary, @ompss and @mpi decorators . . . . . . . . . ... ... 73
File parameters definition shortcuts . . . . . . . . . . . .. Lo 73
COMPSs Python API functions . . . . . . . . . . . . . . 78
PyCOMPSs start function for Jupyter notebook . . . . . . . . .. .. ... ... ... 81
PyCOMPSs stop function for Jupyter notebook . . . . . . . . .. ... ... L. 82
Arguments of the @constraint decorator . . . . . . . . . . . e 97
Arguments of the @Processor decorator . . . . . . . . . . . e 98
General paraver configurations for COMPSs Applications . . . . . . . . ... ... .. ... .... 153
Available paraver configurations for Python events of COMPSs Applications . . . . . . . ... ... 154
Available paraver configurations for COMPSs Applications . . . . . . . . .. ... ... ... .... 154
Available methods from StorageObject . . . . . . . . . . . . L 161
Available methods from StorageObject in Python . . . . . . . ... ... ... .. ... 163
Available methods from StorageObject . . . . . . . . . .. . L 169
SCO object definition . . . . . . . . . . L e 172
Java APL . . . . o e 174
Python APL . . . . . o o 176

vii



COMPSs Documentation, 2.7

COMP Superscalar (COMPSs) is a programming model which aims to ease the development of applications for
distributed infrastructures, such as Clusters, Grids and Clouds. COMP Superscalar also features a runtime system
that exploits the inherent parallelism of applications at execution time.

For the sake of programming productivity, the COMPSs model has four key characteristics:

e Sequential programming: COMPSs programmers do not need to deal with the typical duties of paral-
lelization and distribution, such as thread creation and synchronization, data distribution, messaging or fault
tolerance. Instead, the model is based on sequential programming, which makes it appealing to users that
either lack parallel programming expertise or are looking for better programmability.

e Infrastructure unaware: COMPSs offers a model that abstracts the application from the underlying
distributed infrastructure. Hence, COMPSs programs do not include any detail that could tie them to a
particular platform, like deployment or resource management. This makes applications portable between
infrastructures with diverse characteristics.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python and C/C++ applications. This facilitates the learning of the model,
since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special
APT call, pragma or construct in the application; everything is pure standard Java syntax and libraries.
With regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs
applications.

This manual is divided in 9 sections:



http://compss.bsc.es

COMPSs Documentation, 2.7




Chapter 1

What 1s COMPSs?

COMP Superscalar (COMPSs) is a programming model which aims to ease the development of applications for
distributed infrastructures, such as Clusters, Grids and Clouds. COMP Superscalar also features a runtime system
that exploits the inherent parallelism of applications at execution time.

For the sake of programming productivity, the COMPSs model has four key characteristics:

e Sequential programming: COMPSs programmers do not need to deal with the typical duties of paral-
lelization and distribution, such as thread creation and synchronization, data distribution, messaging or fault
tolerance. Instead, the model is based on sequential programming, which makes it appealing to users that
either lack parallel programming expertise or are looking for better programmability.

e Infrastructure unaware: COMPSs offers a model that abstracts the application from the underlying
distributed infrastructure. Hence, COMPSs programs do not include any detail that could tie them to a
particular platform, like deployment or resource management. This makes applications portable between
infrastructures with diverse characteristics.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python and C/C++ applications. This facilitates the learning of the model,
since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special
APT call, pragma or construct in the application; everything is pure standard Java syntax and libraries.
With regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs
applications.




COMPSs Documentation, 2.7

4 Chapter 1. What is COMPSs?



Chapter 2

Quickstart

2.1 Install COMPSs

e Choose the installation method:

Pip - Local to the user

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $HOME/.local/ folder (or alternatively within the active virtual
environment).

’$ pip install pycompss -v ‘

Important: Please, update the environment after installing COMPSs:

’$ source ~/.bashrc # or alternatively reboot the machine ‘

If installed within a virtual environment, deactivate and activate it to ensure that the environment is
propperly updated.

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information




COMPSs Documentation, 2.7

Pip - Systemwide

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /usr/1ib64/pythonX.Y/site-packages/pycompss/ folder.

’$ sudo -E pip install pycompss -v ‘

Important: Please, update the environment after installing COMPSs:

’$ source /etc/profile.d/compss.sh # or alternatively reboot the machine ‘

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information

Build from sources - Local to the user

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $HOME/COMPSs/ folder.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

$ ./submodules_get.sh

$ ./submodules_patch.sh

$ cd builders/

$ export INSTALL_DIR-$HOME/COMPSs/

$ ./buildlocal ${INSTALL_DIR}

6 Chapter 2. Quickstart



COMPSs Documentation, 2.7

The different installation options can be found in the command help.

$ ./buildlocal -h

Please, check the Post installation Section.

See Installation and Administration section for more information

Build from sources - Systemwide

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /opt/COMPSs/ folder.

git clone https://github.com/bsc-wdc/compss.git
cd compss

./submodules_get.sh

./submodules_patch.sh

cd builders/

export INSTALL_DIR=/opt/COMPSs/

sudo -E ./buildlocal ${INSTALL_DIR}

B P P hH PH P &P

The different installation options can be found in the command help.

$ ./buildlocal -h

Please, check the Post installation Section.

See Installation and Administration section for more information

Supercomputer

Please, check the Supercomputers section.

2.1. Install COMPSs 7



COMPSs Documentation, 2.7

Docker - PyCOMPSs Player

Requirements:

- docker >= 17.12.0-ce
- Python 3

- pip

- docker-py for python

Since the PyCOMPSs player package is available in Pypi (pycompss-player), it can be easly installed with pip as
follows:

$ python3 -m pip install pycompss-player

A complete guide about the PyCOMPSs Player installation and usage can be found in the PyCOMPSs Player
Section.

Tip: Please, check the PyCOMPSs player Installation Section for the further information with regard
to the requirements installation and troubleshooting.

2.2 Write your first app

Choose your flavour:

Java

Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

¢ Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

8 Chapter 2. Quickstart


https://www.docker.com
https://pypi.org/project/docker-py/
https://pypi.org/project/pycompss-player/

COMPSs Documentation, 2.7

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application
code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example
that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with
the generation of a remote task that will be executed on an available node.

Code 1: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {
public static void main(String[] args) {

String counterName = "counter";
int initialValue = args[0];

F e e e e e LT //
// Creation of the file which will contain the counter wvariable //
Y //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue);
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(I0Exception ioe) {
ioe.printStackTrace();

}

[ //
/7 Ezecution of the program //
/e //
SimpleImpl.increment (counterName) ;

/e //
// Reading from an object stored in a File //
2 //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

}
}

2.2. Write your first app 9




COMPSs Documentation, 2.7

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 2: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {
try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);
fos.close();
}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();
}catch(I0Exception ioe){
ioe.printStackTrace();
}
}
}

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are
supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 3: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

@Constraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")

(continues on next page)

10 Chapter 2. Quickstart




COMPSs Documentation, 2.7

(continued from previous page)

void increment (
QParameter(type = Type.FILE, direction = Direction.INOUT)
String file

)3

Application compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the Itf annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupld>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

$ cd tutorial_apps/java/simple/src/main/java/simple/
$~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

2.2. Write your first app 11




COMPSs Documentation, 2.7

Application execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Executing COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

Python

Let’s write your first Python application parallelized with PyCOMPSs. Consider the following code:

Code 4: increment.py

import time
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task

@task(returns=1)

def increment(value):
time.sleep(value * 2) # mimic some computational time
return value + 1

def main():
values = [1, 2, 3, 4]
start = time.time()
for pos in range(len(values)):
values[pos] = increment(values[pos])
values = compss_wait_on(values)

assert values == [2, 3, 4, 5]

print (values)

print("Elapsed time: " + str(time.time() - start_time))
if __name__=='__main__"':

main()

This code increments the elements of an array (values) by calling iteratively to the increment function. The
increment function sleeps the number of seconds indicated by the value parameter to represent some computational
time. On a normal python execution, each element of the array will be incremented after the other (sequentially),
accumulating the computational time. PyCOMPSs is able to parallelize this loop thanks to its @task decorator,
and synchronize the results with the compss_wait_on API call.

Note: If you are using the PyCOMPSs player (pycompss-player), it is time to deploy the COMPSs environment
within your current folder:

$ pycompss init

Please, be aware that the first time needs to download the docker image from the repository, and it may take a
while.

Copy and paste the increment code it into increment.py.

12 Chapter 2. Quickstart



https://pypi.org/project/pycompss-player/

COMPSs Documentation, 2.7

Execution

Now let’s execute increment.py. To this end, we will use the runcompss script provided by COMPSs:

$ runcompss -g increment.py
[Output in next stepl]

Or alternatively, the pycompss run command if using the PyCOMPSs player (which wraps the runcompss com-
mand and launches it within the COMPSs’ docker container):

$ pycompss run -g increment.py
[Output in next step]

Note: The -g flag enables the task dependency graph generation (used later).

The runcompss command has a lot of supported options that can be checked with the -h flag. They can also be
used within the pycompss run command.

Tip: It is possible to run also with the python command using the pycompss module, which accepts the same
flags as runcompss:

$ python -m pycompss -g increment.py # Parallel ezecution
[Output in next stepl]

Having PyCOMPSs installed also enables to run the same code sequentially without the need of removing the
PyCOMPSs syntax.

$ python increment.py # Sequential ezecution
[2, 3, 4, 5]
Elapsed time: 20.0161030293

Output

$ runcompss -g increment.py

[ INFO] Inferred PYTHON language

[ INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/
—default_project.xml

[ INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/resources/
—default_resources.xml

[ INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(433) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—16093e52c94d67250€097a6fad9d3ec00d676febc)

(2, 3, 4, 5]

Elapsed time: 11.5068922043

[(4389) API] - Execution Finished

Nice! it run successfully in my 8 core laptop, we have the expected output, and PyCOMPSs has been able to
run the increment.py application in almost half of the time required by the sequential execution. What happened
under the hood?

2.2. Write your first app 13




COMPSs Documentation, 2.7

COMPSs started a master and one worker (by default configured to execute up to four tasks at the same time)
and executed the application (offloading the tasks execution to the worker).

Let’s check the task dependency graph to see the parallelism that COMPSs has extracted and taken advantage of.

Task dependency graph

COMPSs stores the generated task dependecy graph within the $HOME/ .COMPSs/<APP_NAME>_<00-99>/monitor
directory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot
viewer.

Tip: COMPSs provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/increment.py_O1l/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

It is also available within the PyCOMPSs player:

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ pycompss gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

And you should see:

2 ' 3 ' 4

Figure 1: The dependency graph of the increment application

COMPSs has detected that the increment of each element is independent, and consequently, that all of them can
be done in parallel. In this particular application, there are four increment tasks, and since the worker is able to
run four tasks at the same time, all of them can be executed in parallel saving precious time.

Check the performance

Let’s run it again with the tracing flag enabled:

$ runcompss -t increment.py

[ INFO] Inferred PYTHON language

[ INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/projects/
—default_project.xml

[ INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/resources/
—default_resources.xml

[ INFO] Using default execution type: compss

Welcome to Extrae 3.5.3

(continues on next page)

14 Chapter 2. Quickstart




COMPSs Documentation, 2.7

(continued from previous page)

[... Extrae prolog ...]

WARNING: COMPSs Properties file is null. Setting default values

[(434) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—r6093e5ac94d67250e097a6fad9d3ec00d676fe6c)
(2, 3, 4, 5]

Elapsed time: 13.1016821861
[... Extrae eplilog ...]

mpi2prv: Congratulations! ./trace/increment.py_compss_trace_1587562240.prv has been generated.
[(24117) API] - Execution Finished

The execution has finished successfully and the trace has been generated in the $HOME/.COMPSs/<APP_NAME>_-
<00-99>/trace directory in prv format, which can be displayed and analysed with PARAVER.

$ cd $HOME/.COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_*.prv

Note: In the case of using the PyCOMPSs player, the trace will be generated in the .COMPSs/<APP_NAME>_-
<00-99>/trace directory:

$ cd .COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_*.prv

Once Paraver has started, lets visualize the tasks:

o Click in File and then in Load Configuration
e Look for /PATH/T0O/COMPSs/Dependencies/paraver/cfgs/compss_tasks.cfg and click Open.

Note: In the case of using the PyCOMPSs player, the configuration files can be obtained by downloading them
from the COMPSs repositoy.

And you should see:

Compss Tasks @ increment.py_compss_trace_1587562248.prv

Figure 2: Trace of the increment application

The X axis represents the time, and the Y axis the deployed processes (the first three (1.1.1-1.1.3) belong to
the master and the fourth belongs to the master process in the worker (1.2.1) whose events are shown with the
compss_runtime.cfg configuration file).

The increment tasks are depicted in blue. We can quickly see that the four increment tasks have been executed
in parallel (one per core), and that their lengths are different (depending on the computing time of the task
represented by the time.sleep(value * 2) line).

2.2. Write your first app 15



https://tools.bsc.es/paraver
https://github.com/bsc-wdc/compss/tree/stable/files/paraver/cfgs

COMPSs Documentation, 2.7

Paraver is a very powerful tool for performance analysis. For more information, check the Tracing Section.

Note: If you are using the PyCOMPSs player, it is time to stop the COMPSs environment:

’$ pycompss stop

C/Crt

Application Overview
As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -

name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 5: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);
void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
};

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C++ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name ( parameter {, parameter }* );
return-type = "void" | type
ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction = "in" | "out" | "inout"

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |
"char[<size>]" | "int[<size>]" | "short[<size>]" | "longl[<size>]" |
"float [<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

16 Chapter 2. Quickstart



COMPSs Documentation,

2.7

Main Program

The following code shows an example of matrix multiplication written in C++.

Code 6: Matrix multiplication

#ainclude "Matmul.h"
#ainclude "Matriz.h"
#1include "Block.h'"
int N; //MSIZE
int M; //BSIZE
double val;
int main(int argc, char **argv)
{
Matrix A;
Matrix B;
Matrix C;

N = atoi(argv[1]);
M = atoi(argv[2]);
val = atof (argv[3]);

compss_on() ;
A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);
initMatrix(&C,N,M,0.0);

cout << "Waiting for initialization..

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply (A, B);

compss_off();
return O;

_\nn;

The developer has to take into account the following rules:

1. A header file with the same name as the main file must be included, in this case Matmul.h. This header
file is automatically generated by the binding and it contains other includes and type-definitions that are

required.

2. A call to the compss on binding function is required to turn on the COMPSs runtime.
3. Asin C language, out or inout parameters should be passed by reference by means of the “&” operator before

the parameter name.

4. Synchronization on a parameter can be done calling the compss _wait on binding function. The argument

of this function must be the variable or object we want to synchronize.

5. There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

6. A call to the compss _off binding function is required to turn off the COMPSs runtime.

2.2. Write your first app

17




COMPSs Documentation, 2.7

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#anclude "Matmul.h"
#include "Matriz.h"
#ainclude "Block.h"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
fmatrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

Application Compilation

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul_objects> compss_build_app Matmul

[ INFO ] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//jre/1lib/
—amd64/server

[ INFO ] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.o
g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o Matrix.o
ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

(continues on next page)

18 Chapter 2. Quickstart




COMPSs Documentation, 2.7

(continued from previous page)

Command successful.

Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “-worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/ . COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of
function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-
cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

2.2. Write your first app 19




COMPSs Documentation, 2.7

N = 3, Matrix size
M = 4, Block size

Parallel tasks
[3x3] Matrix = 9 blocks

Each block
accumulates 3
[4x4] matrix
multiplications

Implicit
synchronization

Explicit
synchronizations

Figure 3: Matmul Execution Graph.

2.3 Useful information

Choose your flavour:
Java

Syntax detailed information -> Java

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> COMPSs Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Java Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

Python

Syntax detailed information -> Python Binding

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> COMPSs Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Python Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

C/Cht

Syntax detailed information -> C/C++ Binding

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> COMPSs Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers
Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> C/C++ Sample applications

20 Chapter 2. Quickstart



Chapter 3

Installation and Administration

This section is intended to walk you through the COMPSs installation.

3.1 Dependencies

Next we provide a list of dependencies for installing COMPSs package. The exact names may vary depending
on the Linux distribution but this list provides a general overview of the COMPSs dependencies. For specific
information about your distribution please check the Depends section at your package manager (apt, yum, zypper,
etc.).

Table 1: COMPSs dependencies

Module Dependencies

COMPSs Run- | openjdk-8-jre, graphviz, xdg-utils, openssh-server

time

COMPSs Python | libtool, automake, build-essential, python (>= 2.7 | >=3.5), python-dev | python3-dev,
Binding python-setuptools|python3-setuptools, libpython2.7

COMPSs libtool, automake, build-essential, libboost-all-dev, libxml2-dev

C/C++ Binding
COMPSs Au- | libgmp3-dev, flex, bison, libbison-dev, texinfo, libffi-dev, astor, sympy, enum34, islpy
toparallel
COMPSs Trac- | libxml2 (>= 2.5), libxml2-dev (>= 2.5), gfortran, papi
ing

As an example for some distributions:
Ubuntu 20.04

Ubuntu 20.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential python,
—python-dev libpython2.7 python3 python3-dev libboost-serialization-dev libboost-iostreams-dev 1libxml2
—1ibxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip
$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

21



COMPSs Documentation, 2.7

Ubuntu 18.04

Ubuntu 18.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential python,
—python-dev libpython2.7 python3 python3-dev libboost-serialization-dev libboost-iostreams-dev 1libxml2,
—1libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1lib/jvm/java-8-openjdk-amd64/

Ubuntu 16.04

Ubuntu 16.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential python2.7
—1libpython2.7 libboost-serialization-dev libboost-iostreams-dev 1ibxml2 libxml2-dev csh gfortran,,
—python-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip
$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

OpenSuse Tumbleweed

OpenSuse Tumbleweed dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-devel,
—graphviz xdg-utils python python-devel python3 python3-devel python3-decorator libtool automake,
—1ibboost_headers1_71_0-devel libboost_serializationl_71_0 libboost_iostreamsl_71_0 1libxml2-2 libxml2-
—devel tcsh gcc-fortran papi libpapi gcc-c++ papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip
$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse Leap 15.1

22 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

OpenSuse Leap 15.1 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0O-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-devel,,
—graphviz xdg-utils python python-devel python-decorator python3 python3-devel python3-decorator
—1libtool automake libboost_headersl1_66_0-devel libboost_serializationl_66_0 libboost_iostreamsl1_66_0
—1ibxml2-2 libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++ papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip
$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse 42.2

OpenSuse 42.2 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0O-openjdk java-1_8_0-openjdk-devel,
—graphviz xdg-utils python python-devel libpython2_7-1_0 python-decorator libtool automake boost-devel,
—libboost_serializationl_54_0 libboost_iostreams1_54_0 libxml2-2 libxml2-devel tcsh gcc-fortran python-
—pip papi libpapi gcc-c++ papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip
$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Warning: OpenSuse provides Python 3.4 from its repositories, which is not supported by the COMPSs
python binding. Please, update Python 3 (python and python-devel) to a higher version if you expect to
install COMPSs from sources.

Alternatively, you can use a virtual environment.

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

Fedora 32

Fedora 32 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool automake
—python27 python3 python3-devel boost-devel boost-serialization boost-iostreams libxml2 libxml2-devel,
—gcc gcc-c++ gecec-gfortran tcsh @development-tools bison flex texinfo papi papi-devel gmp-devel

$ # If the libazml softlink is not created during the installation of libxzml2, the COMPSs installationy
—may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1n -s /usr/include/libxml2/1libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip
$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

3.1. Dependencies 23



COMPSs Documentation, 2.7

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1lib/jvm/java-1.8.0-openjdk/

Fedora 25

Fedora 25 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool automake,
—python python-libs python-pip python-devel python2-decorator boost-devel boost-serialization boost-
—iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-tools redhat-rpm-config papi
$ # If the libzml softlink is not created during the installation of libzml2, the COMPSs installationy
—may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1n -s /usr/include/libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

Debian 8

Debian 8 dependencies installation commands:

$ su -

$ echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee /etc/apt/sources.list.d/
—webupd8team-java.list

$ echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee -a /etc/apt/sources.
—1list.d/webupd8team-java.list

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

apt-get update

apt-get install oracle-java8-installer

apt-get install graphviz xdg-utils libtool automake build-essential python python-decorator python-pip,
—python-dev libboost-serializationl.55.0 libboost-iostreams1.55.0 libxml2 libxml2-dev libboost-dev cshy
—gfortran papi-tools

$ wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-bin.zip

$ unzip /opt/gradle-5.4.1-bin.zip -d /opt

@B P P P

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrc if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/lib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

24 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

CentOS 7

CentOS 7 dependencies installation commands:

$ sudo rpm -iUvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

$ sudo yum -y update

$ sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool automake
—python python-libs python-pip python-devel python2-decorator boost-devel boost-serialization boost-
—iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-tools redhat-rpm-config papi
$ sudo pip install decorator

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrc if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/lib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

Attention: Before installing it is also necessary to export the GRADLE_HOME environment variable and include
its binaries path into the PATH environment variable:

$ echo 'export GRADLE_HOME=/opt/gradle-5.4.1' >> ~/.bashrc

$ export GRADLE_HOME=/opt/gradle-5.4.1

$ echo 'export PATH=/opt/gradle-5.4.1/bin:$PATH' >> ~/.bashrc
$ export PATH=/opt/gradle-5.4.1/bin:$PATH

3.1.1 Build Dependencies

To build COMPSs from sources you will also need wget, git and maven.

To install with Pip, pip for the target Python version is required.

3.1.2 Optional Dependencies
For the Python binding it is also recommended to have dill and guppy/guppy3 installed. The dill package

increases the variety of serializable objects by Python (for example: lambda functions), and the guppy/guppy3
package is needed to use the @local decorator. Both packages can be found in pyPI and can be installed via pip.

3.2 Building from sources

This section describes the steps to install COMPSs from the sources.

The first step is downloading the source code from the Git repository.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

Then, you need to download the embedded dependencies from the git submodules.

3.2. Building from sources 25



https://pypi.org/project/dill/
https://pypi.org/project/guppy/
https://pypi.org/project/guppy3/

COMPSs Documentation, 2.7

$ compss> ./submodules_get.sh
$ compss> ./submodules_patch.sh

Finally you just need to run the installation script. You have two options:
For all users

For installing COMPSs for all users run the following command:

$ compss> cd builders/
$ builders> export INSTALL_DIR=/opt/COMPSs/
$ builders> sudo -E ./buildlocal ${INSTALL_DIR}

Attention: Root access is required.

For the current user

For installing COMPSs for the current user run the following commands:

$ compss> cd builders/
$ builders> INSTALL_DIR-$HOME/opt/COMPSs/
$ builders> ./buildlocal ${INSTALL_DIR}

Tip: The buildlocal script allows to disable the installation of components.

command help:

The options can be foun in the

$ compss> cd builders/
$ builders> ./buildlocal -h

Usage: ./buildlocal [options] targetDir

* Options:
--help, -h

--opts
--version, -v
--monitor, -m

--no-monitor, -M

--bindings, -b
--no-bindings, -B

--pycompss, -p
--no-pycompss, -P

--tracing, -t
--no-tracing, -T

--autoparallel, -a
--no-autoparallel, -A

--kafka, -k
--no-kafka, -K

Print this help message
Show available options
Print COMPSs version

Enable Monitor installation
Disable Monitor installation
Default: true

Enable bindings installation
Disable bindings installation
Default: true

Enable PyCOMPSs installation
Disable PyCOMPSs installation
Default: true

Enable tracing system installation
Disable tracing system installation
Default: true

Enable autoparallel module installation
Disable autoparallel module installation
Default: true

Enable Kafka module installation
Disable Kafka module installation

(continues on next page)

26

Chapter 3.

Installation and Administration




COMPSs Documentation, 2.7

(continued from previous page)

Default: true

--nothing, -N Disable all previous options
Default: unused

--user-exec=<str> Enables a specific user execution for maven compilation
When used the maven install is not cleaned.
Default: false

--skip-tests Disables MVN unit tests
Default:

* Parameters:
targetDir COMPSs installation directory
Default: /opt/COMPSs

3.2.1 Post installation

Once your COMPSs package has been installed remember to log out and back in again to end the installation
process.

Caution: Using Ubuntu version 18.04 or higher requires to comment the following lines in your .bashrc in
order to have the appropriate environment after logging out and back again (which in these distributions it
must be from the complete system (e.g. gnome) not only from the terminal, or restart the whole machine).

# If not running interactively, don't do anything

# case $- in #

# *¥1%) 5 # Comment these lines before logging out

# *) return;; # from the whole gnome (or restart the machine).
# esac #

In addition, COMPSs requires ssh passwordless access. If you need to set up your machine for the first time
please take a look at Additional Configuration Section for a detailed description of the additional configuration.

3.3 Pip

3.3.1 Pre-requisites

In order to be able to install COMPSs and PyCOMPSs with Pip, the dependencies (excluding the COMPSs
packages) mentioned in the Dependencies Section must be satisfied (do not forget to have proper JAVA_HOME and
GRADLE_HOME environment variables pointing to the java JDK folder and Gradle home respectively, as well as the
gradle binary in the PATH environment variable) and Python pip.

3.3. Pip 27




COMPSs Documentation, 2.7

3.3.2 Installation

Depending on the machine, the installation command may vary. Some of the possible scenarios and their proper
installation command are:

Install systemwide

Install systemwide:

$ sudo -E pip install pycompss -v

Attention: Root access is required.

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment in the current session.

’$ source /etc/profile.d/compss.sh

Install in user local folder

Install in user home folder (.local):

’$ pip install pycompss -v

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment.

’$ source ~/.bashrc

Within a virtual environment

Within a Python virtual environment:

’ (virtualenv) $ pip install pycompss -v

In this particular case, the installation includes the necessary variables in the activate script. So, restart the virtual
environment in order to set all the COMPSs environment.

3.3.3 Post installation

If you need to set up your machine for the first time please take a look at Additional Configuration Section for a
detailed description of the additional configuration.

3.4 Supercomputers

The COMPSs Framework can be installed in any Supercomputer by installing its packages as in a normal dis-
tribution. The packages are ready to be reallocated so the administrators can choose the right location for the
COMPSs installation.

However, if the administrators are not willing to install COMPSs through the packaging system, we also provide a
COMPSs zipped file containing a pre-build script to easily install COMPSs. Next subsections provide further
information about this process.

28 Chapter 3. Installation and Administration



COMPSs Documentation, 2.7

3.4.1 Prerequisites
In order to successfully run the installation script some dependencies must be present on the target machine.
Administrators must provide the correct installation and environment of the following software:

e Autotools
e BOOST
e Java 8 JRE

The following environment variables must be defined:

e JAVA HOME
e BOOST _CPPFLAGS

The tracing system can be enhanced with:

e PAPI, which provides support for harware counters
e MPI, which speeds up the tracing merge (and enables it for huge traces)

3.4.2 Installation

To perform the COMPSs Framework installation please execute the following commands:

$ # Check out the last COMPSs release
$ wget http://compss.bsc.es/repo/sc/stable/COMPSs_<version>.tar.gz

$ # Unpackage COMPSs
$ tar -xvzf COMPSs_<version>.tar.gz

$ # Install COMPSs at your preferred target location
$ cd COMPSs
$ ./install <targetDir> [<supercomputer.cfg>]

$ # Clean downloaded files
rm -r COMPSs
$ rm COMPSs_<version>.tar.gz

©“

The installation script will create a COMPSs folder inside the given <targetDir> so the final COMPSs installation
will be placed under the <targetDir>/COMPSs folder.

Attention: If the <targetDir>/COMPSs folder already exists it will be automatically erased.

After completing the previous steps, administrators must ensure that the nodes have passwordless ssh access. If
it is not the case, please contact the COMPSs team at support-compss@bsc.es.

The COMPSs package also provides a compssenv file that loads the required environment to allow users work
more easily with COMPSs. Thus, after the installation process we recomend to source the <targetDir>/COMPSs/
compssenv into the users .bashre.

Once done, remember to log out and back in again to end the installation process.

3.4. Supercomputers 29



mailto:support-compss@bsc.es

COMPSs Documentation, 2.7

3.4.3 Configuration

To maintain the portability between different environments, COMPSs has a pre-built structure of scripts to execute
applications in Supercomputers. For this purpose, users must use the enqueue_compss script provided in the
COMPSs installation and specify the supercomputer configuration with --sc_cfg flag.

When installing COMPSs for a supercomputer, system administrators must define a configuration file for the
specific Supercomputer parameters. This document gives and overview about how to modify the configuration
files in order to customize the enqueue compss for a specific queue system and supercomputer. As overview,
the easier way to proceed when creating a new configuration is to modify one of the configurations provided by
COMPSs. System sdministrators can find configurations for LSF, SLURM, PBS and SGE as well as several
examples for Supercomputer configurations in <installation_dir>/Runtime/scripts/queues. For instance, the
configuration for the MareNostrum IV Supercomputer and the Slurm queue system, can be used as base file for
new supercomputer and queue system cfgs. Sysadmins can modify these files by changing the flags, parameters,
paths and default values that corresponds to your supercomputer. Once, the files have been modified, they must
be copied to the queues folder to make them available to the users. The following paragraph describe more in
detail the scripts and configuration files If you need help, contact support-compss@bsc.es.

3.4.3.1 COMPSs Queue structure overview

All the scripts and cfg files shown in Figure 4 are located in the <installation_dir>/Runtime/scripts/ folder.
enqueue_compss and launch_compss (launch.sh in the figure) are in the user subfolder and submit.sh and
the cfgs are located in queues. There are two types of cfg files: the queue system cfg files, which are located in
queues/queue_systems; and the supercomputers cfg files, which are located in queues/supercomputers.

Figure 4: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange system
dependant scripts

3.4.3.2 Configuration Files

The cfg files contain a set of bash variables which are used by the other scripts. On the one hand, the queue
system cfgs contain the variables to indicate the commands used by the system to submit and spawn processes, the
commands or variables to get the allocated nodes and the directives to indicate the number of nodes, processes,
etc. Below you can see an example of the most important variable definition for Slurm

# Submission command (submit.sh)
SUBMISSION_CMD="sbatch"
SUBMISSION_PIPE="< "

# Variables to define the directives as #${QUEUE_CMD} ${ARG_+*}${QUEUE_SEPARATOR}value (submit.sh)
QUEUE_CMD="SBATCH"

QUEUE_SEPARATOR=""

QARG_JOB_NAME="--job-name="

QARG_JOB_QUT="-0"

QARG_JOB_ERROR="-e"

QARG_WD="--workdir="

QARG_WALLCLOCK="-t"

QARG_NUM_NODES="-N"

(continues on next page)

30 Chapter 3. Installation and Administration



mailto:support-compss@bsc.es

COMPSs Documentation, 2.7

(continued from previous page)

QARG_NUM_PROCESSES="-n"

#vars to customize the commands know job id and allocated nodes (submit.sh)
ENV_VAR_JOB_ID="SLURM_JOB_ID"

ENV_VAR_NODE_LIST="SLURM_JOB_NODELIST"

HOSTLIST_CMD="scontrol show hostname"

HOSTLIST_TREATMENT="| awk {' print \$1 '} | sed -e 's/\.["\ 1x//g'"

#vars to customize worker process spawn inside the job (launch_compss)
LAUNCH_CMD="srun"

LAUNCH_PARAMS="-n1 -N1 --nodelist="

LAUNCH_SEPARATOR=""

CMD_SEPARATOR=""

To adapt this script to your queue system, you just need to change the variable value to the command, argument
or value required in your system. If you find that some of this variables are not available in your system, leave it
empty.

On the other hand, the supercomputers cfg files contains a set of variables to indicate the queue system used by a
supercomputer, paths where the shared disk is mounted, the default values that COMPSs will set in the project
and resources files when they are not set by the user and flags to indicate if a functionality is available or not in a
supercomputer. The following lines show examples of this variables for the MareNostrum IV supercomputer.

QUEUE_SYSTEM="slurm"

# Default values enqueue_compss
DEFAULT_EXEC_TIME=10
DEFAULT_NUM_NODES=2
DEFAULT_QUEUE=default
DEFAULT_CPUS_PER_NODE=48
DEFAULT_NODE_MEMORY_SIZE=92
DEFAULT_MASTER_WORKING_DIR=.
MINIMUM_NUM_NODES=1
MINIMUM_CPUS_PER_NODE=1

# Enabling/disabling queue system features
DISABLE_QARG_MEMORY=true
DISABLE_QARG_CONSTRAINTS=false
DISABLE_QARG_QOS=false
DISABLE_QARG_OVERCOMMIT=true
DISABLE_QARG_CPUS_PER_TASK=false
HETEROGENEQUS_MULTIJOB=false

#Paths

SCRATCH_DIR="/scratch/tmp"
GPFS_PREFIX="/gpfs/"

#0ther values

REMOTE_EXECUTOR="none" #disable the ssh spawn at runtime
NETWORK_INFINIBAND_SUFFIX="-ib0" #hostname suffixz to add in order to use infiniband
NETWORK_DATA_SUFFIX="-data" #hostname suffixz to add in order to use infiniband
MASTER_NAME_CMD=hostname #command to know the mastername

To adapt this script to your supercomputer, you just need to change the variables to commands paths or values
which are set in your system. If you find that some of this values are not available in your system, leave them
empty or as they are in the MareNostrum IV.

3.4. Supercomputers 31




COMPSs Documentation, 2.7

3.4.3.3 How are cfg files used in scripts?

The submit.sh is in charge of getting some of the arguments from enqueue_compss, generating the a temporal job
submission script for the queue system (function create_normal tmp submit) and performing the submission in
the scheduler (function submit). The functions used in submit.sh are implemented in common.sh. If you look at
the code of this script, you will see that most of the code is customized by a set of bash vars which are mainly
defined in the cfg files.

For instance the submit command is customized in the following way:

eval ${SUBMISSION_CMD} ${SUBMISSION_PIPE}${TMP_SUBMIT_SCRIPT}

Where ${SUBMISSION_CMD} and ${SUBMISSION_PIPE} are defined in the queue_system.cfg. So, for the case of
Slurm, at execution time it is translated to something like sbatch < /tmp/tmp_submit_script

The same approach is used for the queue system directives defined in the submission script or in the command to
get the assigned host list.

The following lines show the examples in these cases.

’ #${QUEVE_CMD} ${QARG_JOB_NAME}${QUEVE_SEPARATOR}${job_name}

In the case of Slurm in MN, it generates something like #SBATCH --job-name=COMPSs

’host_list=\$(${HUSTLIST_CMD} \$${ENV_VAR_NODE_LIST}${env_var_suffix} ${HOSTLIST_TREATMENT})

The same approach is used in the launch_compss script where it is using the defined vars to customize the
project.zml and resources.xml file generation and spawning the master and worker processes in the assigned re-
sources.

At first, you should not need to modify any script. The goal of the cfg files is that sysadmins just require to modify
the supercomputers cfg, and in the case that the used queue system is not in the queue_ systems, folder it should
create a new one for the new one.

If you think that some of the features of your system are not supported in the current implementation, please
contact us at support-compss@bsc.es. We will discuss how it should be incorporated in the scripts.

3.4.4 Post installation

To check that COMPSs Framework has been successfully installed you may run:

$ # Check the COMPSs wersion
$ runcompss -v
COMPSs version <version>

For queue system executions, COMPSs provides several prebuild queue scripts than can be accessible throgh the
enqueue_ compss command. Users can check the available options by running:

$ enqueue_compss -h

Usage: /apps/COMPSs/2.7/Runtime/scripts/user/enqueue_compss [queue_system_options] [COMPSs_options],
—application_name application_arguments

* Options:

General:
--help, -h Print this help message
--heterogeneous Indicates submission is going to be heterogeneous

Default: Disabled
Queue system configuration:
--sc_cfg=<name> SuperComputer configuration file to use. Must exist insidey
—queues/cfgs/
Default: default

(continues on next page)

32 Chapter 3. Installation and Administration


mailto:support-compss@bsc.es

COMPSs Documentation, 2.7

(continued from previous page)

Submission configuration:
General submision arguments:
--exec_time=<minutes>

--job_name=<name>

--queue=<name>

--reservation=<name>

--constraints=<constraints>

--qos=<qos>

--cpus_per_task
—task.

—worker node and

—respectively.
--job_dependency=<jobID>
--storage_home=<string>
--storage_props=<string>

Normal submission arguments:
--num_nodes=<int>

--num_switches=<int>
—restrictions.

--agents=<string>
—plain|tree

--agents
—Worker deployment.

Heterogeneous submission arguments:

--type_cfg=<file_location>
—requests

--master=<master_node_type>

--workers=type_X:nodes,type_Y:nodes

Launch configuration:
--cpus_per_node=<int>

Expected execution time of the application (in minutes)
Default: 10

Job name

Default: COMPSs

Queue name to submit the job. Depends on the queue system.
For example (MN3): bsc_cs | bsc_debug | debug | interactive
Default: default

Reservation to use when submitting the job.

Default: disabled

Constraints to pass to queue system.

Default: disabled

Quality of Service to pass to the queue system.

Default: default

Number of cpus per task the queue system must allocate pery

Note that this will be equal to the cpus_per_node in aj
equal to the worker_in_master_cpus in a master node,

Default: false

Postpone job execution until the job dependency has ended.
Default: None

Root installation dir of the storage implementation
Default: null

Absolute path of the storage properties file

Mandatory if storage_home is defined

Number of nodes to use
Default: 2
Maximum number of different switches. Select 0 for noy

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: O

Hierarchy of agents for the deployment. Accepted values:y

Default: tree
Deploys the runtime as agents instead of the classic Master-

Default: disabled
Location of the file with the descriptions of node type,

File should follow the following format:
type_XO{

cpus_per_node=24

node_memory=96

}

type_YO{

}

Node type for the master

(Node type descriptions are provided in the --type_cfg flag)

Node type and number of nodes per type for the workers
(Node type descriptions are provided in the --type_cfg flag)

Available CPU computing units on each node

(continues on next page)

3.4. Supercomputers

33




COMPSs Documentation, 2.7

(continued from previous page)

--gpus_per_node=<int>
--fpgas_per_node=<int>
--io_executors=<int>
--fpga_reprogram="<string>
—reprogram the FPGA with
--max_tasks_per_node=<int>
--node_memory=<MB>
--node_storage_bandwidth=<MB>
--network=<name>
—infiniband | data.
--prolog="<string>"
—spaces.
—prolog action

--epilog="<string>"
— (Notice the quotes)

—spaces.

—epilog action

--master_working_dir=<path>

--worker_working_dir=<name | path>

--worker_in_master_cpus=<int>

—can run as worker. Cannot exceed cpus_per_

--worker_in_master_memory=<int> MB

—exceed the node_memory.

--worker_port_range=<min>, <max>

--jvm_worker_in_master_opts="<string>"

—Node.

—the quotes)
--container_image=<path>
--container_compss_path=<path>

--container_opts="<string>"

Default: 48

Available GPU computing units on each node
Default: O

Available FPGA computing units on each node
Default: O

Number of IO executors on each node
Default: O

Specify the full command that needs to be executed toy

the desired bitstream. The location must be an absolute path.
Default:

Maximum number of simultaneous tasks running on a node
Default: -1

Maximum node memory: disabled | <int> (MB)

Default: disabled

Maximum node storage bandwidth: <int> (MB)

Default: 450

Communication network for transfers: default | ethermet |
Default: infiniband

Task to execute before launching COMPSs (Notice the quotes)
If the task has arguments split them by "," rather than,

This argument can appear multiple times for more than one,

Default: Empty
Task to execute after executing the COMPSs application,

If the task has arguments split them by "," rather than
This argument can appear multiple times for more than oney
Default: Empty

Working directory of the application

Default:

Worker directory. Use: scratch | gpfs | <path>
Default: scratch

Maximum number of CPU computing units that the master node,
node.

Default: 24

Maximum memory in master node assigned to the worker. Cannot

Mandatory if worker_in_master_cpus is specified.

Default: 50000

Port range used by the NIO adaptor at the worker side
Default: 43001,43005

Extra options for the JVM of the COMPSs Worker in the Mastery

Each option separed by "," and without blank spaces (Notice

Default:

Runs the application by means of a container engine image
Default: Empty

Path where compss is installed in the container image
Default: /opt/COMPSs

Options to pass to the container engine

Default: empty

(continues on next page)

34

Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

(continued from previous page)

--elasticity=<max_extra_nodes> Activate elasticity specifiying the maximum extra nodesy,
— (ONLY AVAILABLE FORM SLURM CLUSTERS WITH NIO ADAPTOR)
Default: 0
--automatic_scaling=<bool> Enable or disable the runtime automatic scaling (fory
—elasticity)
Default: true
--jupyter_notebook=<path>, Swap the COMPSs master initialization with jupyter notebook,
—from the specified path.
--jupyter_notebook Default: false

Runcompss configuration:

Tools enablers:

--graph=<bool>, --graph, -g Generation of the complete graph (true/false)
When no value is provided it is set to true
Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level ( [ true |y

—basic ] | advanced | scorep | arm-map | arm-ddt | false)

True and basic levels will produce the same traces.
When no value is provided it is set to 1

Default: O

--monitoring=<int>, --monitoring, -m Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

--external_debugger=<int>,
--external_debugger Enables external debugger connection on the specified port,
—(or 9999 if empty)
Default: false
--jmx_port=<int> Enable JVM profiling on specified port

Runtime configuration options:

--task_execution=<compss|storage> Task execution under COMPSs or Storage.
Default: compss
--storage_impl=<string> Path to an storage implementation. Shortcut to setting
—pypath and classpath. See Runtime/storage in your installation folder.
--storage_conf=<path> Path to the storage configuration file
Default: null
--project=<path> Path to the project XML file

Default: /apps/COMPSs/2.7//Runtime/configuration/xml/
—projects/default_project.xml
--resources=<path> Path to the resources XML file
Default: /apps/COMPSs/2.7//Runtime/configuration/xml/
—resources/default_resources.xml

--lang=<name> Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java
--summary Displays a task execution summary at the end of they

—application execution
Default: false
--log_level=<level>, --debug, -d Set the debug level: off | info | debug
Warning: 0ff level compiles with -02 option disabling,
—asserts and __debug__
Default: off

Advanced options:
--extrae_config_file=<path> Sets a custom extrae config file. Must be in a shared disk,
—between all COMPSs workers.
Default: null
--trace_label=<string> Add a label in the generated trace file. Only used in they
—case of tracing is activated.
Default: None

(continues on next page)

3.4. Supercomputers 35




COMPSs Documentation, 2.7

(continued from previous page)

--comm=<ClassName> Class that implements the adaptor for communications
Supported adaptors:
t:: es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor
Default: es.bsc.compss.nio.master.NIOAdaptor
--conn=<className> Class that implements the runtime connector for the cloud
Supported connectors:
t:: es.bsc.compss.connectors.DefaultSSHConnector
es.bsc.compss.connectors.DefaultNoSSHConnector
Default: es.bsc.compss.connectors.DefaultSSHConnector
--streaming=<type> Enable the streaming mode for the given type.
Supported types: FILES, 0BJECTS, PSCOS, ALL, NONE
Default: NONE

--streaming_master_name=<str> Use an specific streaming master node name.
Default: null

--streaming_master_port=<int> Use an specific port for the streaming master.
Default: null

--scheduler=<className> Class that implements the Scheduler for COMPSs

Supported schedulers:
es.bsc.compss.scheduler.data.DataScheduler
es.bsc.compss.scheduler.fifo.FIFOScheduler
es.bsc.compss.scheduler.fifodata.FIFODataScheduler
es.bsc.compss.scheduler.lifo.LIFOScheduler
es.bsc.compss.components.impl.TaskScheduler
es.bsc.compss.scheduler.loadbalancing.

—LoadBalancingScheduler
Default: es.bsc.compss.scheduler.loadbalancing.
—LoadBalancingScheduler

--scheduler_config_file=<path> Path to the file which contains the scheduler configuration.
Default: Empty
--library_path=<path> Non-standard directories to search for libraries (e.g. Javay

—JVM library, Python library, C binding library)
Default: Working Directory

--classpath=<path> Path for the application classes / modules
Default: Working Directory

--appdir=<path> Path for the application class folder.
Default: /home/group/user

--pythonpath=<path> Additional folders or paths to add to the PYTHONPATH
Default: /home/group/user

--base_log_dir=<path> Base directory to store COMPSs log files (a .COMPSs/ foldery

—will be created inside this location)
Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs log files (noy
—sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Each option separed,
by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each optiong,
—separed by "," and without blank spaces (Notice the quotes)
Default: -Xms1024m,-Xmx1024m,-Xmn400m
--cpu_affinity="<string>" Sets the CPU affinity for the workers

Supported options: disabled, automatic, user defined map of,

" /405 M

el A Q/Q 4N 44 /4 44 4C 4o
=theform =870 117/ 12=1515:16 (continues on next page)

36 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

(continued from previous page)

Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, user defined map of,
—the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, user defined map of,
—the form "0-8/9,10,11/12-14,15,16"
Default: automatic

--fpga_reprogram="<string>" Specify the full command that needs to be executed toy
—reprogram the FPGA with the desired bitstream. The location must be an absolute path.
Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of different,
—functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile at the end,

—of the execution
Default: Empty
--PyObject_serialize=<bool> Only for Python Binding. Enable the object serialization toy
—string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent worker in c (true/
—false).
Default: false
--enable_external _adaptation=<bool> Enable external adaptation. This option will disable they
—Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--python_interpreter=<string> Python interpreter to use (python/python2/python3).

Default: python Version: 3
--python_propagate_virtual_environment=<true> Propagate the master virtual environment to the,
—workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of multiprocessing.
— (true/false).
Default: false

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

If none of the pre-build queue configurations adapts to your infrastructure (Isf, pbs, slurm, etc.) please contact
the COMPSs team at support-compss@bsc.es to find out a solution.

If you are willing to test the COMPSs Framework installation you can run any of the applications available at our
application repository http://compss.bsc.es/projects/bar. We suggest to run the java simple application following
the steps listed inside its README file.

For further information about either the installation or the usage please check the README file inside the COMPSs
package.

3.4. Supercomputers 37



mailto:support-compss@bsc.es
http://compss.bsc.es/projects/bar

COMPSs Documentation, 2.7

3.5 Additional Configuration

3.5.1 Configure SSH passwordless

By default, COMPSs uses SSH libraries for communication between nodes. Consequently, after COMPSs is
installed on a set of machines, the SSH keys must be configured on those machines so that COMPSs can establish
passwordless connections between them. This requires to install the OpenSSH package (if not present already)
and follow these steps on each machine:

1. Generate an SSH key pair

$ ssh-keygen -t rsa

2. Distribute the public key to all the other machines and configure it as authorized

$ # For every other available machine (MACHINE):
$ scp "/.ssh/id_rsa.pub MACHINE:./myRSA.pub
$ ssh MACHINE "cat ./myRSA.pub >> ~/.ssh/authorized_keys; rm ./myRSA.pub"

3. Check that passwordless SSH connections are working fine

$ # For every other available machine (MACHINE):
$ ssh MACHINE

For example, considering the cluster shown in Figure 5, users will have to execute the following commands to grant
free ssh access between any pair of machines:

me@localhost:~$ ssh-keygen -t id_rsa

# Granting access localhost -> ml.bsc.es

me@localhost:~$ scp ~/.ssh/id_rsa.pub user_ml@ml.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_ml@ml.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./me_
—localhost.pub"

# Granting access localhost -> m2.bsc.es

me@localhost:~$ scp ~/.ssh/id_rsa.pub user_m20m2.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./me_
—localhost.pub"

me@localhost:~$ ssh user_mi1@ml.bsc.es

user_ml@ml.bsc.es:”> ssh-keygen -t id_rsa

user_ml@ml.bsc.es:™> exit

# Granting access ml.bsc.es -> localhost

me@localhost:~$ scp user_ml@ml.bsc.es:”/.ssh/id_rsa.pub ~/userml_ml.pub

me@localhost:~$ cat ~/userml_ml.pub >> ~/.ssh/authorized_keys

# Granting access ml.bsc.es -> m2.bsc.es

me@localhost:~$ scp ~/userml_ml.pub user_m2@m2.bsc.es:”/userml_ml.pub

me@localhost:~$ ssh user_m20m2.bsc.es "cat ./userml_ml.pub >> ~/.ssh/authorized_keys; rm ./userml_ml.pub"
me@localhost:~$ rm ~/userml_ml.pub

me@localhost:~$ ssh user_m2@m2.bsc.es

user_m2@m2.bsc.es:™> ssh-keygen -t id_rsa

user_m20m2.bsc.es: > exit

# Granting access m2.bsc.es -> localhost

me@localhost:~$ scp user_m20@ml.bsc.es:”/.ssh/id_rsa.pub ~/userm2_m2.pub

me@localhost:~$ cat ~/userm2_m2.pub >> ~/.ssh/authorized_keys

# Granting access m2.bsc.es -> ml.bsc.es

me@localhost:~$ scp ~/userm2_m2.pub user_ml@ml.bsc.es:"/userm2_m2.pub

me@localhost:~$ ssh user_mil@ml.bsc.es "cat ./userm2_m2.pub >> ~/.ssh/authorized_keys; rm ./userm2_m2.pub"
me@localhost:~$ rm ~/userm2_m2.pub

38 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

me@localhost

k-»‘f‘;_‘j/’

user_mi@mal.bsc.es user_m2@m?2.bsc.es

Figure 5: Cluster example

3.5.2 Configure the COMPSs Cloud Connectors

This section provides information about the additional configuration needed for some Cloud Connectors.

3.5.2.1 OCCI (Open Cloud Computing Interface) connector

In order to execute a COMPSs application using cloud resources, the rOCCI (Ruby OCCI) connector® has to be
configured properly. The connector uses the rOCCI CLI client (upper versions from 4.2.5) which has to be installed
in the node where the COMPSs main application runs. The client can be installed following the instructions detailed
at http://appdb.egi.eu/store/software /rocci.cli

3.6 Configuration Files

The COMPSs runtime has two configuration files: resources.xml and project.xml . These files contain infor-
mation about the execution environment and are completely independent from the application.

For each execution users can load the default configuration files or specify their custom configurations by us-
ing, respectively, the --resources=<absolute_path_to_resources.xml> and the --project=<absolute_path_-
to_project.xml> in the runcompss command. The default files are located in the /opt/COMPSs/Runtime/
configuration/xml/ path.

Next sections describe in detail the resources.xml and the project.xml files, explaining the available options.

3.6.1 Resources file

The resources file provides information about all the available resources that can be used for an execution.
This file should normally be managed by the system administrators. Its full definition schema can be found at
/opt/COMPSs/Runtime/configuration/xml/resources/resource_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/resources/resource_schema.svg.

This file contains one entry per available resource defining its name and its capabilities. Administrators can define
several resource capabilities (see example in the next listing) but we would like to underline the importance of
ComputingUnits. This capability represents the number of available cores in the described resource and it is
used to schedule the correct number of tasks. Thus, it becomes essential to define it accordingly to the number of
cores in the physical resource.

https://appdb.egi.eu/store/software/rocci.cli

3.6. Configuration Files 39


http://appdb.egi.eu/store/software/rocci.cli
https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation, 2.7

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml
<?zml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>2</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<Memory>
<Size>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
<OperatingSystem>
<Type>Linux</Type>
<Distribution>0penSUSE</Distribution>
</OperatingSystem>
<Software>
<Application>Java</Application>
<Application>Python</Application>
</Software>
</ComputeNode>
</ResourcesList>

3.6.2 Project file

The project file provides information about the resources used in a specific execution. Consequently, the resources
that appear in this file are a subset of the resources described in the resources.xml file. This file, that contains
one entry per worker, is usually edited by the users and changes from execution to execution. Its full definition
schema can be found at /opt/COMPSs/Runtime/configuration/xml/projects/project_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/projects/project_schema.xsd.

We emphasize the importance of correctly defining the following entries:

installDir Indicates the path of the COMPSs installation inside the resource (not necessarily the same than
in the local machine).

User Indicates the username used to connect via ssh to the resource. This user must have passwordless access
to the resource (see Configure SSH passwordless Section). If left empty COMPSs will automatically try to
access the resource with the same username as the one that lauches the COMPSs main application.

LimitOfTasks The maximum number of tasks that can be simultaneously scheduled to a resource. Considering
that a task can use more than one core of a node, this value must be lower or equal to the number of available
cores in the resource.

40 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
<?zml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<!-- Description for Master Node -->

<MasterNode></MasterNode>

<!--Description for a physical node-->
<ComputeNode Name="localhost">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<Application>
<AppDir>/home/user/apps/</AppDir>
<LibraryPath>/usr/1ib/</LibraryPath>
<Classpath>/home/user/apps/jar/example. jar</Classpath>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<LimitOfTasks>4</Limit0fTasks>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
<User>user</User>
</Adaptor>
</Adaptors>
</ComputeNode>
</Project>

3.6.3 Configuration examples

In the next subsections we provide specific information about the services, shared disks, cluster and cloud config-
urations and several project.xml and resources.xml examples.

3.6.3.1 Parallel execution on one single process configuration

The most basic execution that COMPSs supports is using no remote workers and running all the tasks internally
within the same process that hosts the application execution. To enable the parallel execution of the application,
the user needs to set up the runtime and provide a description of the resources available on the node. For that
purpose, the user describes within the <MasterNode> tag of the project.xml file the resources in the same way it
describes other nodes’ resources on the using the resources.xml file. Since there is no inter-process communication,
adaptors description is not allowed. In the following example, the master will manage the execution of tasks on
the MainProcessor CPU of the local node - a quad-core amd64 processor at 3.0GHz - and use up to 16 GB of
RAM memory and 200 GB of storage.

<?zml verston="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Memory>
<Size>16</Size>

(continues on next page)

3.6. Configuration Files 41




COMPSs Documentation, 2.7

(continued from previous page)

</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
</MasterNode>
</Project>

If no other nodes are available, the list of resources on the resources.xml file is empty as shown in the following
file sample. Otherwise, the user can define other nodes besides the master node as described in the following
section, and the runtime system will orchestrate the task execution on both the local process and on the configured
remote nodes.

<?zml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
</ResourcesList>

3.6.3.2 Cluster and grid configuration (static resources)

In order to use external resources to execute the applications, the following steps have to be followed:

1. Install the COMPSs Worker package (or the full COMPSs Framework package) on all the new resources.

2. Set SSH passwordless access to the rest of the remote resources.

3. Create the WorkingDir directory in the resource (remember this path because it is needed for the project.
xml configuration).

4. Manually deploy the application on each node.

The resources.xml and the project.xml files must be configured accordingly. Here we provide examples about
configuration files for Grid and Cluster environments.

<?xml verston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="hostnamel.domain.es">
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
<Adaptor Name="es.bsc.compss.gat.master.GATAdaptor">
<SubmissionSystem>
<Batch>
<Queue>sequential</Queue>
</Batch>
<Interactive/>
</SubmissionSystem>
<BrokerAdaptor>sshtrilead</BrokerAdaptor>
</Adaptor>
</Adaptors>
</ComputeNode>

<ComputeNode Name="hostname2.domain.es">

(continues on next page)

42 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

(continued from previous page)

</ComputeNode>
</ResourcesList>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode/>
<ComputeNode Name="hostnamel.domain.es">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/COMPSsWorker1/</WorkingDir>
<User>user</User>
<Limit0fTasks>2</Limit0fTasks>
</ComputeNode>
<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</Project>

3.6.3.3 Shared Disks configuration example

Configuring shared disks might reduce the amount of data transfers improving the application performance. To
configure a shared disk the users must:

1. Define the shared disk and its capabilities
2. Add the shared disk and its mountpoint to each worker
3. Add the shared disk and its mountpoint to the master node

Next example illustrates steps 1 and 2. The <SharedDisk> tag adds a new shared disk named sharedDisk0O and
the <AttachedDisk> tag adds the mountpoint of a named shared disk to a specific worker.

<?zml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<SharedDisk Name="sharedDiskO">
<Storage>
<Size>100.0</Size>
<Type>Persistent</Type>
</Storage>
</SharedDisk>

<ComputeNode Name="localhost">

<SharedDisks>
<AttachedDisk Name="sharedDisk0">
<MountPoint>/tmp/SharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</ComputeNode>
</ResourcesList>

On the other side, to add the shared disk to the master node, the users must edit the project.xml file. Next
example shows how to attach the previous sharedDiskO to the master node:

<?zml verston="1.0" encoding="UTF-8" standalone="yes"?>

<Project>
<MasterNode>
<SharedDisks>
<AttachedDisk Name="sharedDisk0">
<MountPoint>/home/sharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>

(continues on next page)

3.6. Configuration Files 43




COMPSs Documentation, 2.7

(continued from previous page)

</MasterNode>
<ComputeNode Name="localhost">

</ComputeNode>
</Project>

Notice that the resources.xml file can have multiple SharedDisk definitions and that the SharedDisks tag (either
in the resources.xml or in the project.xml files) can have multiple AttachedDisk childrens to mount several
shared disks on the same worker or master.

3.6.3.4 Cloud configuration (dynamic resources)

In order to use cloud resources to execute the applications, the following steps have to be followed:

1. Prepare cloud images with the COMPSs Worker package or the full COMPSs Framework package installed.
2. The application will be deployed automatically during execution but the users need to set up the configuration
files to specify the application files that must be deployed.

The COMPSs runtime communicates with a cloud manager by means of connectors. Each connector implements
the interaction of the runtime with a given provider’s API, supporting four basic operations: ask for the price
of a certain VM in the provider, get the time needed to create a VM, create a new VM and terminate a VM.
This design allows connectors to abstract the runtime from the particular API of each provider and facilitates the
addition of new connectors for other providers.

The resources.xml file must contain one or more <CloudProvider> tags that include the information about a
particular provider, associated to a given connector. The tag must have an attribute Name to uniquely identify
the provider. Next example summarizes the information to be specified by the user inside this tag.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<CloudProvider Name="PROVIDER_NAME">
<Endpoint>
<Server>https://PROVIDER_URL</Server>
<ConnectorJar>CONNECTOR_JAR</ConnectorJar>
<ConnectorClass>CONNECTOR_CLASS</ConnectorClass>

</Endpoint>
<Images>
<Image Name="Imagel">
<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<OperatingSystem>
<Type>Linux</Type>
</OperatingSystem>
<Software>
<Application>Java</Application>
</Software>
<Price>
<TimeUnit>100</TimeUnit>
<PricePerUnit>36.0</PricePerUnit>
</Price>

(continues on next page)

44 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

(continued from previous page)

</Image>
<Image Name="Image2">
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
</Images>

<InstanceTypes>
<InstanceType Name="Instancel">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Memory>
<Size>1000.0</Size>
</Memory>
<Storage>
<Size>2000.0</Size>
</Storage>
</InstanceType>
<InstanceType Name="Instance2">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
</Processor>
</InstanceType>
</InstanceTypes>
</CloudProvider>
</ResourcesList>

The project.xml complements the information about a provider listed in the resources.xml file. This file can
contain a <Cloud> tag where to specify a list of providers, each with a <CloudProvider> tag, whose name attribute
must match one of the providers in the resources.xml file. Thus, the project.xml file must contain a subset
of the providers specified in the resources.xml file. Next example summarizes the information to be specified by

the user inside this <Cloud> tag.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<Cloud>
<InitialVMs>1</InitialVMs>
<MinimumVMs>1</MinimumVMs>
<MaximumVMs>4</MaximumVMs>
<CloudProvider Name="PROVIDER_NAME">
<Limit0fVMs>4</Limit0fVMs>
<Properties>
<Property Context="C1">
<Name>P1</Name>
<Value>V1i</Value>
</Property>

(continues on next page)

3.6. Configuration Files

45




COMPSs Documentation, 2.7

(continued from previous page)

<Property>
<Name>P2</Name>
<Value>V2</Value>
</Property>
</Properties>

<Images>
<Image Name="Imagel">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<User>user</User>
<Application>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>2</Limit0fTasks>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
<IncludedSoftware>
<Application>Java</Application>
<Application>Python</Application>
</IncludedSoftware>
</Package>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
</Package>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
<Image Name="Image2">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
</Image>
</Images>
<InstanceTypes>
<InstanceType Name="Instancel"/>
<InstanceType Name="Instance2"/>
</InstanceTypes>
</CloudProvider>

<CloudProvider Name="PROVIDER_NAME2">
</CloudProvider>

</Cloud>
</Project>

For any connector the Runtime is capable to handle the next list of properties:

46 Chapter 3. Installation and Administration




COMPSs Documentation, 2.7

Table 2: Connector supported properties in the project.xml file

Name Description

provider-user Username to login in the provider
provider-user-credential | Credential to login in the provider
time-slot Time slot

estimated-creation-time | Estimated VM creation time
max-vm-creation-time Maximum VM creation time

Additionally, for any connector based on SSH, the Runtime automatically handles the next list of properties:

Table 3: Properties supported by any SSH based connector in the
project.xml file

Name Description
vm-user User to login in the VM
vm-password Password to login in the VM

vm-keypair-name Name of the Keypair to login in the VM
vim-keypair-location | Location (in the master) of the Keypair to login in the VM

Finally, the next sections provide a more accurate description of each of the currently available connector and its
specific properties.

Cloud connectors: rOCCI

The connector uses the rOCCI binary client! (version newer or equal than 4.2.5) which has to be installed in the
node where the COMPSs main application is executed.

This connector needs additional files providing details about the resource templates available on each provider. This
file is located under <COMPSs_INSTALL_DIR>/configuration/xml/templates path. Additionally, the user must
define the virtual images flavors and instance types offered by each provider; thus, when the runtime decides the
creation of a VM, the connector selects the appropriate image and resource template according to the requirements
(in terms of CPU, memory, disk, etc) by invoking the rOCCI client through Mixins (heritable classes that override
and extend the base templates).

Table 4 contains the rOCCI specific properties that must be defined under the Provider tag in the project.xml
file and Table 5 contains the specific properties that must be defined under the Instance tag.

https://appdb.egi.eu/store/software/rocci.cli

3.6. Configuration Files 47


https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation,

2.7

Table 4: rOCCI extensions in the project.xml file

Name Description

auth Authentication method, x509 only supported
user-cred Path of the VOMS proxy

ca-path Path to CA certificates directory

ca-file Specific CA filename

owner Optional. Used by the PMES Job-Manager
jobname Optional. Used by the PMES Job-Manager

timeout Maximum command time

username Username to connect to the back-end cloud provider
password Password to connect to the back-end cloud provider
voms Enable VOMS authentication

media-type Media type

resource Resource type

attributes Extra resource attributes for the back-end cloud provider
context Extra context for the back-end cloud provider
action Extra actions for the back-end cloud provider

mixin Mixin definition

link Link

trigger-action | Adds a trigger

log-to Redirect command logs

skip-ca-check

Skips CA checks

filter

Filters command output

dump-model

Dumps the internal model

debug

Enables the debug mode on the connector commands

verbose

Enables the verbose mode on the connector commands

Table 5: Configuration of the <resources>.xml templates file

Instance | Multiple entries of resource templates.

Type Name of the resource template. It has to be the same name than in the previous files
CPU Number of cores

Memory | Size in GB of the available RAM

Disk Size in GB of the storage

Price Cost per hour of the instance

Cloud connectors: JClouds

The JClouds connector is based on the JClouds API version 1.9.1. Table Table 6 shows the extra available options

under the Properties tag that are used by this connector.

Table 6: JClouds extensions in the <project>.xml file

Instance

Description

provider

Back-end provider to use with JClouds (i.e. aws-ec2)

48

Chapter 3.

Installation and Administration



COMPSs Documentation, 2.7

Cloud connectors: Docker

This connector uses a Java API client from https://github.com/docker-java/docker-java, version 3.0.3. It has not
additional options. Make sure that the image/s you want to load are pulled before running COMPSs with docker
pull IMAGE. Otherwise, the connectorn will throw an exception.

Cloud connectors: Mesos

The connector uses the vO Java API for Mesos which has to be installed in the node where the COMPSs main
application is executed. This connector creates a Mesos framework and it uses Docker images to deploy workers,
each one with an own IP address.

By default it does not use authentication and the timeout timers are set to 3 minutes (180.000 milliseconds). The
list of optional properties available from connector is shown in Table 7.

Table 7: Mesos connector options in the <project>.xml file

Instance Description

mesos-framework-name

Framework name to show in Mesos.

mesos-woker-name

Worker names to show in Mesos.

mesos-framework-hostname

Framework hostname to show in Mesos.

mesos-checkpoint

Checkpoint for the framework.

mesos-authenticate

Uses authentication? (true/false)

mesos-principal

Principal for authentication.

mesos-secret

Secret for authentication.

mesos-framework-register-timeout

Timeout to wait for Framework to register.

mesos-framework-register-timeout-units

Time units to wait for register.

mesos-worker-wait-timeout

Timeout to wait for worker to be created.

mesos-worker-wait-timeout-units

Time units for waiting creation.

mesos-worker-kill-timeout

Number of units to wait for killing a worker.

mesos-worker-kill-timeout-units

Time units to wait for killing.

mesos-docker-command

Command to use at start for each worker.

mesos-containerizer

Containers to use: (MESOS/DOCKER)

mesos-docker-network-type

Network type to use: (BRIDGE/HOST/USER)

mesos-docker-network-name

Network name to use for workers.

mesos-docker-mount-volume

Mount volume on workers? (true/false)

mesos-docker-volume-host-path

Host path for mounting volume.

mesos-docker-volume-container-path

Container path to mount volume.

TimeUnit avialable values: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, SECONDS.

3.6.3.5 Services configuration

To allow COMPSs applications to use WebServices as tasks, the resources.xml can include a special type of
resource called Service. For each WebService it is necessary to specify its wsdl, its name, its namespace and its
port.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">

</ComputeNode>
<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj?wsdl">

<Name>HmmerQObjects</Name>
<Namespace>http://hmmerobj.worker</Namespace>

(continues on next page)

3.6. Configuration Files 49



https://github.com/docker-java/docker-java

COMPSs Documentation, 2.7

(continued from previous page)

<Port>HmmerObjectsPort</Port>
</Service>
</ResourcesList>

When configuring the project.xml file it is necessary to include the service as a worker by adding an special entry
indicating only the name and the limit of tasks as shown in the following example:

<?zml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="localhost">

</ComputeNode>

<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj?wsdl">
<LimitOfTasks>2</Limit0fTasks>
</Service>
</Project>

50 Chapter 3. Installation and Administration




Chapter 4

Application development

This section is intended to walk you through the development of COMPSs applications.

4.1 Java

This section illustrates the steps to develop a Java COMPSs application, to compile and to execute it. The Simple
application will be used as reference code. The user is required to select a set of methods, invoked in the sequential
application, that will be run as remote tasks on the available resources.

4.1.1 Programming Model

This section shows how the COMPSs programming model is used to develop a Java task-based parallel application
for distributed computing. First, We introduce the structure of a COMPSs Java application and with a simple
example. Then, we will provide a complete guide about how to define the application tasks. Finally, we will show
special API calls and other optimization hints.

4.1.1.1 Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

e Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

51



COMPSs Documentation, 2.7

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application

code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example

that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with
the generation of a remote task that will be executed on an available node.

Code 7: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {
public static void main(String[] args) {

String counterName = "counter";
int initialValue = args[0];

Y e

// Creation of the file which will contain the counter wvariable //
A

try {

FileOutputStream fos = new FileOutputStream(counterName) ;

fos.write(initialValue);

System.out.println("Initial counter value is " + initialValue);

fos.close();
}catch(I0Exception ioe) {
ioe.printStackTrace();

}

[ //
/7 Ezecution of the program //
/e //
SimpleImpl.increment (counterName) ;

/e //
// Reading from an object stored in a File //
2 //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read())

fis.close();
}catch(IOException ioe) {
ioe.printStackTrace();
}
}
}

B

52

Chapter 4. Application development




COMPSs Documentation,

2.7

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 8: Simple Implementation (Simplelmpl.java)

package simple;

import java.io
import java.io

import java.io
import java.io

.FileInputStream;

.FileOutputStream;

.I0Exception;
.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {

try{

FileInputStream fis

}
}
}

new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos
fos.write(++count);
fos.close();

}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();

}catch(I0Exception ioe){
ioe.printStackTrace();

new FileOutputStream(counterFile);

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are
supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).
2. The Java class that contains the code of the method.
3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 9: Interface of the Simple application (Simpleltf.java)

import
import
import
import
import

public

es.

es

es.

es

es.

interface SimpleItf {

package simple;

bsc.
.bsc.
bsc
.bsc.
bsc.

compss.
compss.

.compss.

compss.
compss.

types.
types.
types.
types.
types.

@Constraints(computingUnits = "1",
@Method(declaringClass =

annotations
annotations
annotations
annotations
annotations

.Constraints;
.task.Method;
.Parameter;
.parameter.Direction;
.parameter.Type;

memorySize = "0.3")
"simple.SimpleImpl")

(continues on next page)

4.1. Java

53




COMPSs Documentation, 2.7

(continued from previous page)

)

void increment (

QParameter(type = Type.FILE, direction = Direction.INOUT)
String file

The following sections show a detailed guide of how to implement complex applications.

4.1.1.2 Task definition reference guide

The task definition interface is a Java annotated interface where developers define tasks as annotated methods in
the interfaces. Annotations can be of three different types:

1. Task-definition annotations are method annotations to indicate which type of task is a method declared in
the interface.

2. The Parameter annotation provides metadata about the task parameters, such as data type, direction and
other property for runtime optimization.

3. The Constraints annotation describes the minimum capabilities that a given resource must fulfill to execute
the task, such as the number of processors or main memory size.

4. Scheduler hint annotation provides information about how to deal with tasks of this type at scheduling and
execution

A complete and detailed explanation of the usage of the metadata includes:

Task-definition Annotations

For each declared methods, developers has to define a task type. The following list enumerates the possible task

types:

e @Method: Defines the Java method as a task

declaringClass (Mandatory) String specifying the class that implements the Java method.
targetDirection This field specifies the direction of the target object of an object method. It can be
defined as: INOUT” (default value) if the method modifies the target object, “CONCURRENT” if this
object modification can be done concurrently, or “IN” if the method does not modify the target object.
0.

priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

onFailure Expected behaviour if the task fails. OnFuailure. RETRY (default value) makes the task be
executed again, OnFailure. CANCEL SUCCESSORS ignores the failure and cancels the succesor tasks,
OnFailure. FAIL stops the whole application in a save mode once a task fails or OnFailure. IGNORE
ignores the failure and continues with normal runtime execution.

e @Binary: Defines the Java method as a binary invokation

binary (Mandatory) String defining the full path of the binary that must be executed.

workingDir Full path of the binary working directory inside the COMPSs Worker.

priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @QMPI: Defines the Java method as a MPI invokation

mpiRunner (Mandatory) String defining the mpi runner command.

binary (Mandatory) String defining the full path of the binary that must be executed.

processes String defining the number of MPI processes spawn in the task execution. This can be
combined with the constraints annotation to create define a MPI+OpenMP task. (Default is 1)
scaleByCU It indicates that the defined processes will be scaled by the defined computingUnits in
the constraints. So, the total MPI processes will be processes multiplied by computingUnits. This
functionality is used to groups MPI processes per node. Number of groups will be set in processes and
the number of processes per node will be indicated by computingUnits

workingDir Full path of the binary working directory inside the COMPSs Worker.

54

Chapter 4. Application development



COMPSs Documentation, 2.7

priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @OmpSs: Defines the Java method as a OmpSs invokation

binary (Mandatory) String defining the full path of the binary that must be executed.

workingDir Full path of the binary working directory inside the COMPSs Worker.

priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @Service: Mandatory. It specifies the service properties.

namespace Mandatory. Service namespace

name Mandatory. Service name.

port Mandatory. Service port.

operation Operation type.

priority “true” if the service takes priority, “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

Parameter-level annotations

For each parameter of task (method declared in the interface), the user must include a @Parameter annotation.
The properties

e Direction: Describes how a task uses the parameter (Default is IN).

Direction.IN: Task only reads the data.

Direction.INOUT: Task reads and modifies

Direction.OUT: Task completely modify the data, or previous content or not modified data is not
important.

Direction. COMMUTATIVE: An INOUT usage of the data which can be re-ordered with other
executions of the defined task.

Direction.CONCURRENT: The task allow concurrent modifications of this data. It requires a
storage backend that manages concurrent modifications.

e Type: Describes the data type of the task parameter. By default, the runtime infers the type according to
the Java datatype. However, it is mandatory to define it for files, directories and Streams.
COMPSs supports the following types for task parameters:

Basic types: To indicate a parameter is a Java primitive type use the follwing types: Type. BOOLEAN,
Type. CHAR, Type.BYTE, Type.SHORT, Type.INT, Type. LONG, Type. FLOAT, Type. DOUBLE. They
can only have IN direction, since primitive types in Java are always passed by value.

String: To indicate a parameter is a Java String use Type.STRING. It can only have IN direction,
since Java Strings are immutable.

File: The real Java type associated with a file parameter is a String that contains the path to the file.
However, if the user specifies a parameter as Type. FILE, COMPSs will treat it as such. It can have any
direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).

Directory: The real Java type associated with a directory parameter is a String that contains the path
to the directory. However, if the user specifies a parameter as Type. DIRECTORY, COMPSs will treat
it as such. It can have any direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).
Object: An object parameter is defined with Type.Object. It can have any direction (IN, INOUT,
COMMUTATIVE or CONCURRENT).

Streams: A Task parameters can be defined as stream with Type.STREAM. It can have direction IN,
if the task pull data from the stream, or OUT if the task pushes data to the stream.

e Return type: Any object or a generic class object. In this case the direction is always OUT. Basic types are
also supported as return types. However, we do not recommend to use them because they cause an implicit
synchronization

e StdIOStream: For non-native tasks (binaries, MPI, and OmpSs) COMPSs supports the auto-
matic redirection of the Linux streams by specifying StdlOStream.STDIN, StdIOStream.STDOUT or
StdIOStream.STDERR. Notice that any parameter annotated with the stream annotation must be of type
Type.FILE, and with direction Direction.IN for StdIOStream.STDIN or Direction.OUT/ Direction.INOUT
for StdIOStream.STDOUT and StdIOStream.STDERR.

e Prefix: For non-native tasks (binaries, MPI, and OmpSs) COMPSs allows to prepend a constant String to
the parameter value to use the Linux joint-prefixes as parameters of the binary execution.

4.1.

Java 55



COMPSs Documentation, 2.7

e Weight: Provides a hint of the size of this parameter compared to a default one. For instance, if a parameters
is 3 times larger than the others, set the weigh property of this paramenter to 3.0. (Default is 1.0).

¢ keepRename: Runtime rename files to avoid some data dependencies. It is transparent to the final user
because we rename back the filename when invoking the task at worker. This management creates an
overhead, if developers know that the task is not name nor extension sensitive (i.e can work with rename),
they can set this property to true to reduce the overhead.

Constraints annotations

e @Constraints: The user can specify the capabilities that a resource must have in order to run a method.
For example, in a cloud execution the COMPSs runtime creates a VM that fulfils the specified requirements
in order to perform the execution. A full description of the supported constraints can be found in Table 14.

Scheduler annotations

e @SchedulerHints: It specifies hints for the scheduler about how to treat the task.
— isReplicated “true” if the method must be executed in all the worker nodes when invoked from the
main application (it is a String not a Java boolean).
— isDistributed “true” if the method must be scheduled in a forced round robin among the available
resources (it is a String not a Java boolean).

4.1.1.3 Alternative method implementations

Since version 1.2, the COMPSs programming model allows developers to define sets of alternative implementations
of the same method in the Java annotated interface. Code 10 depicts an example where the developer sorts
an integer array using two different methods: merge sort and quick sort that are respectively hosted in the
packagepath. Mergesort and packagepath. Quicksort classes.

Code 10: Alternative sorting method definition example

@Method(declaringClass = "packagepath.Mergesort")
@Method(declaringClass = "packagepath.Quicksort")
void sort(
QParameter(type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

As depicted in the example, the name and parameters of all the implementations must coincide; the only difference
is the class where the method is implemented. This is reflected in the attribute declaringClass of the @Method
annotation. Instead of stating that the method is implemented in a single class, the programmer can define several
instances of the @Method annotation with different declaring classes.

As independent remote methods, the sets of equivalent methods might have common restrictions to be fulfilled
by the resource hosting the execution. Or even, each implementation can have specific constraints. Through
the @Constraints annotation, developers can specify the common constraints for a whole set of methods. In the
following example (Code 11) only one core is required to run the method of both sorting algorithms.

Code 11: Alternative sorting method definition with constraint
example

O@Constraints(computingUnits = "1")
@Method(declaringClass = "packagepath.Mergesort")
@Method(declaringClass = "packagepath.Quicksort")
void sort(
QParameter(type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

56 Chapter 4. Application development




COMPSs Documentation, 2.7

However, these sorting algorithms have different memory consumption, thus each algorithm might require a specific
amount of memory and that should be stated in the implementation constraints. For this purpose, the developer
can add a @Constraints annotation inside each @Method annotation containing the specific constraints for that
implementation. Since the Mergesort has a higher memory consumption than the quicksort, the Code 12 sets a
requirement of 1 core and 2GB of memory for the mergesort implementation and 1 core and 500MB of memory
for the quicksort.

Code 12: Alternative sorting method definition with specific con-
straints example

@Constraints(computingUnits = "1")
@Method(declaringClass = "packagepath.Mergesort", constraints = @Constraints(memorySize = "2.0"))
@Method(declaringClass = "packagepath.Quicksort", constraints = Q@Constraints(memorySize = "0.5"))

void sort(
QParameter (type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

4.1.1.4 Java API calls
COMPSs also provides a explicit synchronization call, namely barrier, which can be used through the COMPSs
Java  API. The use of barrier forces to wait for all tasks that have been submitted before the barrier is called.

When all tasks submitted before the barrier have finished, the execution continues (Code 13).

Code 13: COMPSs.barrier() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

// Setup counterNamel and counterName2 files
// Ezecute task increment 1
SimpleImpl.increment (counterNamel) ;
// API Call to wait for all tasks
COMPSs.barrier();
// Ezecute task increment 2
SimpleImpl.increment (counterName2) ;

When an object if used in a task, COMPSs runtime store the references of these object in the runtime data
structures and generate replicas and versions in remote workers. COMPSs is automatically removing these replicas
for obsolete versions. However, the reference of the last version of these objects could be stored in the runtime
data-structures preventing the garbage collector to remove it when there are no references in the main code. To
avoid this situation, developers can indicate the runtime that an object is not going to use any more by calling the
deregisterObject API call. Code 14 shows a usage example of this API call.

Code 14: COMPSs.deregisterObject() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

final int ITERATIONS = 10;

for (int i = 0; i < ITERATIONS; ++i) {
Dummy d = new Dummy(d) ;
TaskImpl.task(d);
/*41lows garbage collector to delete the

object from memory when the task is finished */

COMPSs.deregisterObject ((Object) d);

(continues on next page)

4.1. Java 57




COMPSs Documentation, 2.7

(continued from previous page)

To synchronize files, the getFile API call synchronizes a file, returning the last version of file with its original name.
Code 15 contains an example of its usage.

Code 15: COMPSs.getFile() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {
for (int i=0; i<1; i++) {
TaskImpl.task(FILE_NAME, i);
3
/*Waits until all tasks have finished and
synchronizes the file with its last version*/

COMPSs.getFile (FILE_NAME) ;

4.1.2 Application Compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the [tf annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupId>es.bsc.compss</groupIld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

$ cd tutorial_apps/java/simple/src/main/java/simple/
$~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

58 Chapter 4. Application development




COMPSs Documentation, 2.7

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

If you are using an IDE (such as Eclipse or NetBeans) we recommend you to add the compss-engine.jar file as an
external file to the project. The compss-engine.jar file is available at your current COMPSs installation under the
following path: /opt/COMPSs/Runtime/compss-engine.jar

Please notice that if you have performed a custom installation, the location of the package can be different.

4.1.3 Application Execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Ezxecuting COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

4.2 Python Binding

COMPSs features a binding for Python 2 and 3 applications. The next subsections explain how to program a
Python application for COMPSs and a brief overview on how to execute it.

4.2.1 Programming Model

4.2.1.1 Task Selection
As in the case of Java, a COMPSs Python application is a Python sequential program that contains calls to tasks.
In particular, the user can select as a task:

e Functions
e Instance methods: methods invoked on objects.
e Class methods: static methods belonging to a class.

The task definition in Python is done by means of Python decorators instead of an annotated interface. In partic-
ular, the user needs to add a @task decorator that describes the task before the definition of the function/method.

As an example (Code 16), let us assume that the application calls a function func, which receives a file path (string
parameter) and an integer parameter. The code of func updates the file.

Code 16: Python application example

def func(file_path, value):
# update the file 'file_path'

def main():
my_file = '/tmp/sample_file.txt'
func(my_file, 1)

L

if __name == '__main__

main()

4.2. Python Binding 59




COMPSs Documentation, 2.7

In order to select func as a task, the corresponding @task decorator needs to be placed right before the definition
of the function, providing some metadata about the parameters of that function. The @task decorator has to be
imported from the pycompss library (Code 17).

Code 17: Python task import

from pycompss.api.task import task

@task()
def func():

Function parameters

The @task decorator does not interfere with the function parameters, Consequently, the user can define the function
parameters as normal python functions (Code 18).

Code 18: Task function parameters example

Qtask()
def func(paraml, param2):

The use of *args and **kwargs as function parameters is supported (Code 19).

Code 19: Python task *args and **kwargs example

Q@task(returns=int)
def argkwarg_func(*args, *xkwargs):

And even with other parameters, such as usual parameters and default defined arguments. Code 20 shows an
example of a task with two three parameters (whose one of them (’s’) has a default value), *args and **kwargs.

Code 20: Python task with default parameters example

Q@task(returns=int)
def multiarguments_func(v, w, s = 2, *args, **kwargs):

Tasks within classes

Functions within classes can also be declared as tasks as normal functions. The main difference is the existence of
the self parameter which enables to modify the callee object.

For tasks corresponding to instance methods, by default the task is assumed to modify the callee object (the object
on which the method is invoked). The programmer can tell otherwise by setting the target direction argument of
the @task decorator to IN (Code 21).

Code 21: Python instance method example

class MyClass(object):

Qtask(target_direction=IN)
def instance_method(self):
. # self is NOT modified here

Class methods and static methods can also be declared as tasks. The only requirement is to place the @classmethod
or @staticmethod over the @task decorator (Code 22). Note that there is no need to use the target direction flag

60 Chapter 4. Application development




COMPSs Documentation, 2.7

within the @task decorator.

Code 22: Python @classmethod and @staticmethod tasks exam-
ple

class MyClass(object):

Qclassmethod
@task()
def class_method(cls, a, b, c):

@staticmethod
@task(returns=int)
def static_method(a, b, c):

Tip: Tasks inheritance and overriding supported!!!

Caution: The objects used as task parameters MUST BE serializable:

e Implement the __getstate__ and __setstate__ functions in their classes for those objects that are not
automatically serializable.

e The classes must not be declared in the same file that contains the main method (if __name__=='__-
main__"') (known pickle issue).

Important: For instances of user-defined classes, the classes of these objects should have an empty constructor,
otherwise the programmer will not be able to invoke task instance methods on those objects (Code 23).

Code 23: Using user-defined classes as task returns

# In file utils.py
from pycompss.api.task import task
class MyClass(object):
def __init__(self): # empty constructor

Qtask()
def yet_another_task(self):
# do something with the self attridbutes

# In file main.py
from pycompss.api.task import task
from utils import MyClass

Otask(returns=MyClass)
def ret_func():

myc = MyClass()
return myc

def main():
o = ret_func()

(continues on next page)

4.2. Python Binding 61




COMPSs Documentation, 2.7

(continued from previous page)

# invoking a task instance method on a future object can only
# be done when an empty constructor is defined in the object's
# class

o.yet_another_task()

if __name__=='__main__"':

main()

4.2.1.2 Task Parameters

The metadata corresponding to a parameter is specified as an argument of the @task decorator, whose name is the
formal parameter’s name and whose value defines the type and direction of the parameter. The parameter types
and directions can be:

Types

Primitive types (integer, long, float, boolean)

Strings

Objects (instances of user-defined classes, dictionaries, lists, tuples, complex numbers)
o Files

Direction

Read-only (IN - default)
Read-write (INOUT)

Write-only (OUT)

Concurrent (CONCURRENT)
Conmutative (CONMUTATIVE)

COMPSs is able to automatically infer the parameter type for primitive types, strings and objects, while the user
needs to specify it for files. On the other hand, the direction is only mandatory for INOUT and OUT parameters.
Thus, when defining the parameter metadata in the @task decorator, the user has the following options:

62 Chapter 4. Application development




COMPSs Documentation, 2.7

PARAMETER DESCRIPTION

IN The parameter is read-only. The type will be inferred.

INOUT The parameter is read-write. The type will be inferred.

ouT The parameter is write-only. The type will be inferred.

CONCURRENT The parameter is read-write with concurrent access. The type will be inferred.

CONMUTATIVE The parameter is read-write with conmutative access. The type will be in-
ferred.

FILE/FILE IN The parameter is a file. The direction is assumed to be IN.

FILE INOUT The parameter is a read-write file.

FILE OUT The parameter is a write-only file.

DIRECTORY _IN The parameter is a directory and the direction is IN. The directory will be
compressed before any transfer amongst nodes.

DIRECTORY _INOUT The parameter is a read-write directory. The directory will be compressed
before any transfer amongst nodes.

DIRECTORY _0OUT The parameter is a write-only directory. The directory will be compressed
before any transfer amongst nodes.

FILE CONCURRENT The parameter is a concurrent read-write file.

FILE CONMUTATIVE The parameter is a conmutative read-write file.

COLLECTION _IN The parameter is read-only collection.

COLLECTION _INOUT The parameter is read-write collection.

COLLECTION_ OUT The parameter is write-only collection.

COLLECTION _ - The parameter is read-only collection of files.

FILE/COLLECTION _-

FILE IN

COLLECTION FILE IN- The parameter is read-write collection of files.

ouT

COLLECTION _FILE OUT The parameter is write-only collection of files.

Consequently, please note that in the following cases there is no need to include an argument in the @task decorator
for a given task parameter:

e Parameters of primitive types (integer, long, float, boolean) and strings: the type of these parameters can
be automatically inferred by COMPSs, and their direction is always IN.

e Read-only object parameters: the type of the parameter is automatically inferred, and the direction defaults
to IN.

The parameter metadata is available from the pycompss library (Code 24)

Code 24: Python task parameters import

from pycompss.api.parameter import *

Continuing with the example, in Code 25 the decorator specifies that func has a parameter called f, of type FILE
and INOUT direction. Note how the second parameter, i, does not need to be specified, since its type (integer)
and direction (IN) are automatically inferred by COMPSs.

Code 25: Python task example with input output file (FILE -
INOUT)

from pycompss.api.task import task # Import @task decorator
from pycompss.api.parameter import * # Import parameter metadata for the @task decorator

@task (f=FILE_INOUT)
def func(f, i):
fd = open(f, 'r+')

The user can also define that the access to a parameter is concurrent with CONCURRENT or to a file FILE -
CONCURRENT (Code 26). Tasks that share a “CONCURRENT” parameter will be executed in parallel, if any

4.2. Python Binding 63



COMPSs Documentation, 2.7

other dependency prevents this. The CONCURRENT direction allows users to have access from multiple tasks to
the same object/file during their executions. However, note that COMPSs does not manage the interaction with
the objects or files used/modified concurrently. Taking care of the access/modification of the concurrent objects
is responsibility of the developer.

Code 26: Python task example with FILE CONCURRENT

from pycompss.api.task import task # Import @task decorator
from pycompss.api.parameter import * # Import parameter metadata for the @task decorator

Qtask (f=FILE_CONCURRENT)
def func(f, i):

Or even, the user can also define that the access to a parameter is conmutative with CONMUTATIVE or to a file
FILE CONMUTATIVE (Code 27). The execution order of tasks that share a “CONMUTATIVE” parameter can
be changed by the runtime following the conmutative property.

Code 27: Python task example with FILE CONMUTATIVE

from pycompss.api.task import task # Import @task decorator
from pycompss.api.parameter import * # Import parameter metadata for the @task decorator

Otask (£f=FILE_CONMUTATIVE)
def func(f, i):

Moreover, it is possible to specify that a parameter is a collection of elements (e.g. list) and its direction (COL-
LECTION _IN or COLLECTION INOUT) (Code 28). In this case, the list may contain sub-objects that will be
handled automatically by the runtime. It is important to annotate data structures as collections if in other tasks
there are accesses to individual elements of these collections as parameters. Without this annotation, the runtime
will not be able to identify data dependences between the collections and the individual elements.

Code 28: Python task example with COLLECTION (IN)

from pycompss.api.task import task # Import @task decorator
from pycompss.api.parameter import * # Import parameter metadata for the @task decorator

Otask(my_collection=COLLECTION)
def func(my_collection):
for element in my_collection:

The sub-objects of the collection can be collections of elements (and recursively). In this case, the runtime also
keeps track of all elements contained in all sub-collections. In order to improve the performance, the depth of the
sub-objects can be limited through the use of the depth parameter (Code 29)

64 Chapter 4. Application development




COMPSs Documentation, 2.7

Code 29: Python task example with COLLECTION IN and
Depth

Otask(my_collection={Type:COLLECTION_IN, Depth:2})
def func(my_collection):
for inner_collection in my_collection:
for element in inner_collection:
# The contents of element will not be tracked

4.2.1.3 Other Task Parameters

Task time out

The user is also able to define the time out of a task within the @task decorator with the time_out=<TIME_IN_-
SECONDS> hint. The runtime will cancel the task if the time to execute the task exceeds the time defined by the
user. For example, Code 30 shows how to specify that the unknown_duration_task maximum duration before
canceling (if exceeded) is one hour.

Code 30: Python task time_out example

Otask(time_out=3600)
def unknown_duration_task(self):

Scheduler hints

The programmer can provide hints to the scheduler through specific arguments within the @task decorator.

For instance, the programmer can mark a task as a high-priority task with the priority argument of the @task
decorator (Code 31). In this way, when the task is free of dependencies, it will be scheduled before any of the
available low-priority (regular) tasks. This functionality is useful for tasks that are in the critical path of the
application’s task dependency graph.

Code 31: Python task priority example

Otask(priority=True)
def func():

Moreover, the user can also mark a task as distributed with the is_distributed argument or as replicated with
the is_replicated argument (Code 32). When a task is marked with is_ distributed=True, the method must be
scheduled in a forced round robin among the available resources. On the other hand, when a task is marked with
is_ replicated=True, the method must be executed in all the worker nodes when invoked from the main application.
The default value for these parameters is False.

Code 32: Python task is_ distributed and is_replicated examples

Otask(is_distributed=True)
def func():

Otask(is_replicated=True)
def func2(Q):

4.2. Python Binding 65




COMPSs Documentation, 2.7

On failure task behaviour

In case a task fails, the whole application behaviour can be defined using the on_ failure argument (Code 33).
It has four possible values: ‘RETRY’, "CANCEL_SUCCESSORS’, "FAIL’ and ’YIGNORE’. 'RETRY” is
the default behaviour, making the task to be executed again (on the same worker or in another worker if the
failure remains). 'CANCEL SUCCESSORS’ ignores the failed task and cancels the execution of the successor
tasks, 'FAIL’ stops the whole execution once a task fails and TGNORE’ ignores the failure and continues with
the normal execution.

Code 33: Python task on_ failure example

Otask(on_failure='CANCEL_SUCCESSORS')
def func():

4.2.1.4 Task Parameters Summary

Table 8 summarizes all arguments that can be found in the @task decorator.

Table 8: Arguments of the @task decorator

Argument Value
Formal param- | (default: empty) The parameter is an object or a simple tipe that will
eter name be inferred.
IN Read-only parameter, all types.
INOUT Read-write parameter, all types except file (primi-
tives, strings, objects).
ouT Write-only parameter, all types except file (primi-
tives, strings, objects).
CONCURRENT Concurrent read-write parameter, all types except file
(primitives, strings, objects).
CONMUTATIVE Conmutative read-write parameter, all types except
file (primitives, strings, objects).
FILE(_IN) Read-only file parameter.
FILE INOUT Read-write file parameter.
FILE OUT Write-only file parameter.
FILE CONCURRENT Concurrent read-write file parameter.
FILE CONMUTATIVE Conmutative read-write file parameter.
DIRECTORY(_IN) The parameter is a read-only directory.
DIRECTORY INOUT The parameter is a read-write directory.
DIRECTORY OUT the parameter is a write-only directory.
COLLECTION( IN) Read-only collection parameter (list).
COLLECTION INOUT Read-write collection parameter (list).
COLLECTION_ OUT Read-only collection parameter (list).
COLLECTION_FILE( IN) Read-only collection of files parameter (list of files).
COLLECTION FILE INOUT Read-write collection of files parameter (list of files).
COLLECTION FILE OUT Read-only collection of files parameter (list opf files).
Dictionary: {Type:(empty=object)/FILE/COLLECTION, Direc-
tion: (empty=IN)/IN/INOUT/OUT/CONCURRENT}
returns int (for integer and boolean), long, float, str, dict, list, tuple, user-defined classes
target direc- INOUT (default), IN or CONCURRENT
tion
priority True or False (default)
is_distributed | True or False (default)
is_replicated True or False (default)
on_ failure 'RETRY’ (default), '"CANCEL_SUCCESSORS’, 'FAIL’ or IGNORE’
time out int (time in seconds)
66 Chapter 4. Application development




COMPSs Documentation, 2.7

4.2.1.5 Task Return

If the function or method returns a value, the programmer can use the returns argument within the @task decorator.
In this argument, the programmer can specify the type of that value (Code 34).

Code 34: Python task returns example

Q@task(returns=int)
def ret_func():
return 1

Moreover, if the function or method returns more than one value, the programmer can specify how many and their
type in the returns argument. Code 35 shows how to specify that two values (an integer and a list) are returned.

Code 35: Python task with multireturn example

Otask(returns=(int, list))
def ret_func():
return 1, [2, 3]

Alternatively, the user can specify the number of return statements as an integer value (Code 36). This way of
specifying the amount of return eases the returns definition since the user does not need to specify explicitly the
type of the return arguments. However, it must be considered that the type of the object returned when the task is
invoked will be a future object. This consideration may lead to an error if the user expects to invoke a task defined
within an object returned by a previous task. In this scenario, the solution is to specify explicitly the return type.

Code 36: Python task returns with integer example

Otask(returns=1)
def ret_func():
return "my_string"

Q@task(returns=2)
def ret_func():
return 1, [2, 3]

Important: If the programmer selects as a task a function or method that returns a value, that value is not
generated until the task executes (Code 37).

Code 37: Task return value generation

Otask(return=MyClass)
def ret_func():
return MyClass(...)

o = ret_func() # o is a future object

if __name__=='__main

The object returned can be involved in a subsequent task call, and the COMPSs runtime will automatically find
the corresponding data dependency. In the following example, the object o is passed as a parameter and callee of
two subsequent (asynchronous) tasks, respectively (Code 38).

Code 38: Task return value subsequent usage

if name__=='__main__"':

# o is a future object
o = ret_func()

(continues on next page)

4.2. Python Binding 67




COMPSs Documentation, 2.7

(continued from previous page)

another_task(o)

o.yet_another_task()

Tip: PyCOMPSs is able to infer if the task returns something and its amount in most cases. Consequently,
the user can specify the task without returns argument. But this is discouraged since it requires code analysis,
including an overhead that can be avoided by using the returns argument.

Tip: PyCOMPSs is compatible with Python 3 type hinting. So, if type hinting is present in the code, PyCOMPSs
is able to detect the return type and use it (there is no need to use the returns):

Code 39: Python task returns with type hinting

Otask ()
def ret_func() -> str:
return "my_string"

Q@task()
def ret_func() -> (int, list):
return 1, [2, 3]

4.2.1.6 Other task types

In addition to this API functions, the programmer can use a set of decorators for other purposes.

For instance, there is a set of decorators that can be placed over the @task decorator in order to define the
task methods as a binary invocation (with the Binary decorator), as a OmpSs invocation (with the OmpSs
decorator), as a MPI invocation (with the MPI decorator), as a COMPSs application (with the COMPSs
decorator), or as a task that requires multiple nodes (with the Multinode decorator). These decorators must
be placed over the @task decorator, and under the @constraint decorator if defined.

Consequently, the task body will be empty and the function parameters will be used as invocation parameters with
some extra information that can be provided within the @task decorator.

The following subparagraphs describe their usage.

Binary decorator

The @binary decorator shall be used to define that a task is going to invoke a binary executable.

In this context, the @task decorator parameters will be used as the binary invocation parameters (following their
order in the function definition). Since the invocation parameters can be of different nature, information on their
type can be provided through the @task decorator.

Code 40 shows the most simple binary task definition without/with constraints (without parameters); please note
that @Qconstraint decorator has to be provided on top of the others.

68 Chapter 4. Application development




COMPSs Documentation, 2.7

Code 40: Binary task example

from pycompss.api.task import task
from pycompss.api.binary import binary

@binary(binary="mybinary.bin")
Otask()
def binary_func():

pass

Qconstraint (computingUnits="2")
@binary(binary="otherbinary.bin")
Qtask()
def binary_func2():

pass

The invocation of these tasks would be equivalent to:

$ ./mybinary.bin
$ ./otherbinary.bin # in resources that respect the constraint.

The @binary decorator supports the working_dir parameter to define the working directory for the execution of
the defined binary.

Code 41 shows a more complex binary invocation, with files as parameters:

Code 41: Binary task example 2

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="grep", working dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

pass

# This task definition is equivalent to the folloowing, which s more wverbose:
@binary(binary="grep", working_dir=".")

Otask(infile={Type:FILE_IN, StdIOStream:STDIN}, result={Type:FILE_OUT, StdIOStream:STDOUT})
def grepper (keyword, infile, result):

pass
if __name__=='__main__"':
infile = "infile.txt"

outfile = "outfile.txt"
grepper ("Hi", infile, outfile)

The invocation of the grepper task would be equivalent to:

$ # grep keyword < infile > result
$ grep Hi < infile.txt > outfile.txt

Please note that the keyword parameter is a string, and it is respected as is in the invocation call.

Thus, PyCOMPSs can also deal with prefixes for the given parameters. Code 42 performs a system call (Is) with
specific prefixes:

4.2. Python Binding 69




COMPSs Documentation, 2.7

Code 42: Binary task example 3

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="1s")
Otask(hide={Type:FILE_IN, Prefix:"--hide="}, sort={Prefix:"--sort="})
def myLs(flag, hide, sort):

pass
if __name__=='__main__"':
flag = '-1'
hideFile = "fileToHide.txt"
sort = "time"

myLs(flag, hideFile, sort)

The invocation of the myLs task would be equivalent to:

$ # ls -1 --hide=hide --sort=sort
$ 1s -1 --hide=fileToHide.txt --sort=time

This particular case is intended to show all the power of the @binary decorator in conjuntion with the @task deco-
rator. Please note that although the hide parameter is used as a prefix for the binary invocation, the fileToHide.txt
would also be transfered to the worker (if necessary) since its type is defined as FILE IN. This feature enables to
build more complex binary invocations.

In addition, the @binary decorator also supports the fail_by_exit_value parameter to define the failure of the
task by the exit value of the binary (Code 43). It accepts a boolean (True to consider the task failed if the exit
value is not 0, or False to ignore the failure by the exit value (default)), or a string to determine the environment
variable that defines the fail by exit value (as boolean). The default behaviour (fail_by_exit_value=False)
allows users to receive the exit value of the binary as the task return value, and take the necessary decissions based
on this value.

Code 43: Binary task example with fail_by_exit_value

@binary(binary=”mybinary.bin”, fail_by_exit_value=True)
Q@task()
def binary_func():

pass

OmpSs decorator

The @ompss decorator shall be used to define that a task is going to invoke a OmpSs executable (Code 44).

Code 44: OmpSs task example

from pycompss.api.ompss import ompss

Qompss (binary="ompssApp.bin")
0task()
def ompss_func():

pass

The OmpSs executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

70 Chapter 4. Application development




COMPSs Documentation, 2.7

MPI decorator

The @mpi decorator shall be used to define that a task is going to invoke a MPI executable (Code 45).

Code 45: MPI task example

from pycompss.api.mpi import mpi

Ompi(binary="mpiApp.bin", runner="mpirun", computing_nodes=2)
Qtask()
def mpi_func():

pass

The MPI executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

COMPSs decorator

The @compss decorator shall be used to define that a task is going to be a COMPSs application (Code 46). It
enables to have nested PyCOMPSs/COMPSs applications.

Code 46: COMPSs task example

from pycompss.api.compss import compss

Q@compss (runcompss="${RUNCOMPSS}", flags="-d4",
app_name="/path/to/simple_compss_nested.py", computing_nodes="2")
Q@task()
def compss_func():
pass

The COMPSs application invocation can also be enriched with the flags accepted by the runcompss executable.
Please, check execution manual for more details about the supported flags.

Multinode decorator

The @multinode decorator shall be used to define that a task is going to use multiple nodes (e.g. using internal
parallelism) (Code 47).

4.2. Python Binding 71




COMPSs Documentation, 2.7

Code 47: Multinode task example

from pycompss.api.multinode import multinode

@multinode (computing_nodes="2")
Otask()
def multinode_func():

pass

The only supported parameter is computing nodes, used to define the number of nodes required by the task (the
default value is 1). The mechanism to get the number of nodes, threads and their names to the task is through the
COMPSS NUM NODES, COMPSS NUM THREADS and COMPSS HOSTNAMES environment variables

respectively, which are exported within the task scope by the COMPSs runtime before the task execution.

Other task types summary

Next tables summarizes the parameters of these decorators.

e @binary
Parameter Description
binary (Mandatory) String defining the full path of the binary that must be executed.
working dir | Full path of the binary working directory inside the COMPSs Worker.

e @ompss

Parameter

Description

binary

(Mandatory) String defining the full path of the binary that must be executed.

working dir

Full path of the binary working directory inside the COMPSs Worker.

e @mpi
Parameter Description
binary (Mandatory) String defining the full path of the binary that must be executed.
working - Full path of the binary working directory inside the COMPSs Worker.
dir
runner (Mandatory) String defining the MPI runner command.
comput- Integer defining the number of computing nodes reserved for the MPI execution
ing nodes (only a single node is reserved by default).

e @Qcompss

Parameter Description

runcompss (Mandatory) String defining the full path of the runcompss binary that must be
executed.

flags String defining the flags needed for the runcompss execution.

app _name (Mandatory) String defining the application that must be executed.

comput- Integer defining the number of computing nodes reserved for the COMPSs execution

ing nodes (only a single node is reserved by default).

e @multinode

Parameter

Description

comput-
ing nodes

Integer defining the number of computing nodes reserved for the task execution
(only a single node is reserved by default).

In addition to the parameters that can be used within the @task decorator, Table 9 summarizes the StdIOStream
parameter that can be used within the @task decorator for the function parameters when using the @binary,
@ompss and @mpi decorators. In particular, the StdIOStream parameter is used to indicate that a parameter is

72 Chapter 4. Application development



COMPSs Documentation, 2.7

going to be considered as a FILE but as a stream (e.g. >, < and 2 > in bash) for the @binary, @ompss and @mpi
calls.

Table 9: Supported StdIOStreams for the @binary, @Qompss and
@mpi decorators

Parameter Description
(default: empty) | Not a stream.
STDIN Standard input.
STDOUT Standard output.
STDERR Standard error.

Moreover, there are some shorcuts that can be used for files type definition as parameters within the @task
decorator (Table 10). It is not necessary to indicate the Direction nor the StdIOStream since it may be already be
indicated with the shorcut.

Table 10: File parameters definition shortcuts

Alias Description

COLLECTION( IN) Type: COLLECTION, Direction: IN

COLLECTION INOUT Type: COLLECTION, Direction: INOUT

COLLECTION OUT Type: COLLECTION, Direction: OUT

COLLECTION FILE( IN) Type: COLLECTION (File), Direction: IN

COLLECTION FILE INOUT Type: COLLECTION (File), Direction: INOUT
COLLECTION FILE OUT Type: COLLECTION (File), Direction: OUT

FILE( IN) STDIN Type: File, Direction: IN, StdIOStream: STDIN

FILE(_IN) STDOUT Type: File, Direction: IN, StdIOStream: STDOUT

FILE( IN) STDERR Type: File, Direction: IN, StdIOStream: STDERR

FILE OUT _ STDIN Type: File, Direction: OUT, StdIOStream: STDIN

FILE OUT_ STDOUT Type: File, Direction: OUT, StdIOStream: STDOUT

FILE OUT_ STDERR Type: File, Direction: OUT, StdlOStream: STDERR

FILE INOUT STDIN Type: File, Direction: INOUT, StdIOStream: STDIN

FILE INOUT STDOUT Type: File, Direction: INOUT, StdIOStream: STDOUT

FILE INOUT_ STDERR Type: File, Direction: INOUT, StdIOStream: STDERR

FILE CONCURRENT Type: File, Direction: CONCURRENT

FILE CONCURRENT STDIN Type: File, Direction: CONCURRENT, StdIOStream: STDIN
FILE CONCURRENT STDOUT | Type: File, Direction: CONCURRENT, StdlOStream: STDOUT
FILE CONCURRENT STDERR | Type: File, Direction: CONCURRENT, StdIOStream: STDERR
FILE CONMUTATIVE Type: File, Direction: CONMUTATIVE

FILE CONMUTATIVE STDIN Type: File, Direction: CONMUTATIVE, StdIOStream: STDIN
FILE CONMUTATIVE STD- Type: File, Direction: CONMUTATIVE, StdIOStream: STDOUT
ouT

FILE CONMUTATIVE STDERR | Type: File, Direction: CONMUTATIVE, StdIOStream: STDERR

These parameter keys, as well as the shortcuts, can be imported from the PyCOMPSs library:

from pycompss.api.parameter import *

4.2. Python Binding

73




COMPSs Documentation, 2.7

4.2.1.7 Task Constraints

It is possible to define constraints for each task. To this end, the decorator @constraint followed by the desired
constraints needs to be placed ON TOP of the @Qtask decorator (Code 48).

Important: Please note the the order of @constraint and @task decorators is important.

Code 48: Constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Oconstraint (computing_units="4")
@task (c=INOUT)
def func(a, b, c):

c t=a *x b

This decorator enables the user to set the particular constraints for each task, such as the amount of Cores required
explicitly. Alternatively, it is also possible to indicate that the value of a constraint is specified in a environment
variable (Code 49). A full description of the supported constraints can be found in Table 14.

For example:

Code 49: Constrained task with environment variable example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Qconstraint (computing_units="4",
app_software="numpy,scipy,gnuplot",
memory_size="$MIN_MEM_REQ")

@task(c=INOUT)

def func(a, b, c):

c+=a*b

Or another example requesting a CPU core and a GPU (Code 50).

Code 50: CPU and GPU constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint

@constraint (processors=[{'processorType':'CPU', 'computingUnits':'1'},
{'processorType':'GPU', 'computingUnits':'1'}])

Otask(returns=1)

def func(a, b, c):

return result

When the task requests a GPU, COMPSs provides the information about the assigned GPU through the
COMPSS _BINDED GPUS, CUDA_VISIBLE DEVICES and GPU_DEVICE ORDINAL environment vari-
ables. This information can be gathered from the task code in order to use the GPU.

Please, take into account that in order to respect the constraints, the peculiarities of the infrastructure must be
defined in the resources.xml file.

74 Chapter 4. Application development




COMPSs Documentation, 2.7

4.2.1.8 Multiple Task Implementations

As in Java COMPSs applications, it is possible to define multiple implementations for each task. In particular,
a programmer can define a task for a particular purpose, and multiple implementations for that task with the
same objective, but with different constraints (e.g. specific libraries, hardware, etc). To this end, the @implement
decorator followed with the specific implementations constraints (with the @constraint decorator, see Section
[subsubsec:constraints]) needs to be placed ON TOP of the @Qtask decorator. Although the user only calls the
task that is not decorated with the @implement decorator, when the application is executed in a heterogeneous
distributed environment, the runtime will take into account the constraints on each implementation and will try
to invoke the implementation that fulfills the constraints within each resource, keeping this management invisible
to the user (Code 51).

Code 51: Multiple task implementations example

from pycompss.api.implement import implement

@implement(source_class="sourcemodule", method="main_func")
Qconstraint (app_software="numpy")
Otask(returns=list)
def myfunctionWithNumpy(listl, list2):
# Operate with the lists using numpy
return resultlist

Otask(returns=list)

def main_func(listl, list2):
# Operate with the lists using built-int functions
return resultlist

Please, note that if the implementation is used to define a binary, OmpSs, MPI, COMPSs or multinode task
invocation (see Other task types), the @implement decorator must be always on top of the decorators stack,
followed by the @constraint decorator, then the @binary/@ompss/@mpi/@compss/@multinode decorator, and
finally, the @Qtask decorator in the lowest level.

4.2.1.9 Main Program

The main program of the application is a sequential code that contains calls to the selected tasks. In addition,
when synchronizing for task data from the main program, there exist seven API functions that can to be invoked:

compss_file exists(file _name) Check if a file exists. If it does not exist, it check if file has been accessed
before by calling the runtime.

compss_open(file _name, mode="r’) Similar to the Python open() call. It synchronizes for the last version
of file file name and returns the file descriptor for that synchronized file. It can have an optional parameter
mode, which defaults to ’r’, containing the mode in which the file will be opened (the open modes are
analogous to those of Python open()).

compss_delete file(file _name) Notifies the runtime to delete a file.

compss _wait on_file(file name) Synchronizes for the last version of the file file_ name. Returns True if
success (False otherwise).

compss_wait on_ directory(directory name) Synchronizes for the last version of the directory directory_ -
name. Returns True if success (False otherwise).

compss__delete object(object) Notifies the runtime to delete all the associated files to a given object.

compss_barrier(no_more tasks=False) Performs a explicit synchronization, but does not return any ob-
ject. The use of compss_barrier() forces to wait for all tasks that have been submitted before the compss_ bar-
rier() is called. When all tasks submitted before the compss barrier() have finished, the execution continues.
The no_more_ tasks is used to specify if no more tasks are going to be submitted after the compss_ barrier().

compss_barrier group(group name) Performs a explicit synchronization over the tasks that belong to the
group group name, but does not return any object. The use of compss_barrier_group() forces to wait for
all tasks that belong to the given group submitted before the compss barrier group() is called. When all
group tasks submitted before the compss barrier group() have finished, the execution continues. See Group
Tasks for more information about task groups.

4.2. Python Binding 75




COMPSs Documentation, 2.7

compss_wait on(obj, to write=True) Synchronizes for the last version of object obj and returns the syn-
chronized object. It can have an optional boolean parameter to_ write, which defaults to True, that indicates
whether the main program will modify the returned object. It is possible to wait on a list of objects. In this
particular case, it will synchronize all future objects contained in the list.

TaskGroup(group name, implicit barrier=True) Python context to define a group of tasks. All tasks
submitted within the context will belong to group name context and are sensitive to wait for them while the
rest are being executed. Tasks groups are depicted within a box into the generated task dependency graph.
See Group Tasks for more information about task groups.

To illustrate the use of the aforementioned API functions, the following example (Code 52) first invokes a task
func that writes a file, which is later synchronized by calling compss_open(). Later in the program, an object of
class MyClass is created and a task method method that modifies the object is invoked on it; the object is then
synchronized with compss_wait_on(), so that it can be used in the main program from that point on.

Then, a loop calls again ten times to func task. Afterwards, the barrier performs a synchronization, and the
execution of the main user code will not continue until the ten func tasks have finished.

Code 52: PyCOMPSs API usage

from pycompss.api.api import compss_file_exists

from pycompss.api.api import compss_open

from pycompss.api.api import compss_delete_file

from pycompss.api.api import compss_delete_object
from pycompss.api.api import compss_wait_on

from pycompss.api.api import compss_wait_on_file

from pycompss.api.api import compss_wait_on_directory
from pycompss.api.api import compss_barrier

if __name__=='__main__"':
my_file = 'file.txt'
func(my_file)
if compss_file_exists(my_file):
print ("Exists")
else:
print("Not exists")

fd = compss_open(my_file)

my_file2 = 'file2.txt'
func(my_file2)
compss_delete_file(my_file2)

my_file3 = 'file3.txt'
func(my_file3)
compss_wait_on_file(my_file3)

my_directory = '/tmp/data’
func_dir(my_directory)
compss_wait_on_directory(my_directory)

my_obj1l = MyClass()
my_objl.method ()
compss_delete_object (my_objl)

my_obj2 = MyClass()
my_obj2.method ()
my_obj2 = compss_wait_on(my_obj2)

(continues on next page)

76 Chapter 4. Application development




COMPSs Documentation, 2.7

(continued from previous page)

for i in range(10):
func(str(i) + my_file)
compss_barrier()

The corresponding task selection for the example above would be (Code 53):

Code 53: PyCOMPSs API usage tasks

Otask(f=FILE_QUT)
def func(f):

class MyClass(object):

Otask()
def method(self):
. # self is modified here

Tip: It is possible to synchronize a list of objects. This is particularly useful when the programmer expect
to synchronize more than one elements (using the compss wait_on function) (Code 54. This feature also works
with dictionaries, where the value of each entry is synchronized. In addition, if the structure synchronized is a
combination of lists and dictionaries, the compss wait _on will look for all objects to be synchronized in the whole
structure.

Code 54: Synchronization of a list of objects

if __name__=='__main__":
# 1 is a list of objects where some/all of them may be future objects
1=1

for i in range(10):
1.append(ret_func())

1 = compss_wait_on(1l)

Important: In order to make the COMPSs Python binding function correctly, the program-
mer should not use relative imports in the code. Relative imports can lead to ambiguous code
and they are discouraged in Python, as explained in: http://docs.python.org/2/faq/programming.html#
what-are-the-best-practices-for-using-import-in-a-module

4.2. Python Binding 77



http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module

COMPSs Documentation, 2.7

Group Tasks

COMPSs also enables to specify task groups. To this end, COMPSs provides the TaskGroup context (Code 55)
which can be tuned with the group name, and a second parameter (boolean) to perform an implicit barrier for the
whole group. Users can also define task groups within task groups.

Code 55: PyCOMPSs Task group definiton

from pycompss.api.task import task
from pycompss.api.api import TaskGroup

from pycompss.api.api import compss_barrier_group

Qtask()
def funcl():

@task()
def func2():

def test_taskgroup():
# Creation of group
with TaskGroup('Groupl', False):
for i in range(NUM_TASKS):
func1()
func2()

compss_barrier_group('Groupl')

__main__"':
test_taskgroup()

if __name__=='

API

Table 11 summarizes the API functions to be used in the main program of a COMPSs Python application.

Table 11: COMPSs Python API functions

API Function

Description

compss_file exists(file_name)

Check if a file exists.

compss_open(file name, mode="r")

Synchronizes for the last version of a file and returns its file descrip-
tor.

compss_delete_file(file _name)

Notifies the runtime to remove a file.

compss_wait_on_file(file name)

Synchronizes for the last version of a file.

compss_wait_on_ direc-
tory(directory name)

Synchronizes for the last version of a directory.

compss_delete object(object)

Notifies the runtime to delete the associated file to this object.

compss_ barrier(no_more tasks=False)

Wait for all tasks submitted before the barrier.

compss_barrier _group(group name)

Wait for all tasks that belong to group name group submitted be-
fore the barrier.

compss_wait_on(obj, to_write=True)

Synchronizes for the last version of an object (or a list of objects)
and returns it.

TaskGroup(group name, implicit bar-
rier=True)

Context to define a group of tasks. implicit barrier forces waiting
on context exit.

78

Chapter 4. Application development




COMPSs Documentation, 2.7

Local Decorator

Besides the synchronization API functions, the programmer has also a decorator for automatic function parameters
synchronization at his disposal. The @local decorator can be placed over functions that are not decorated as tasks,
but that may receive results from tasks (Code 56). In this case, the @local decorator synchronizes the necessary
parameters in order to continue with the function execution without the need of using explicitly the compss -
wait_on call for each parameter.

Code 56: @local decorator example

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on
from pycompss.api.parameter import INOUT
from pycompss.api.local import local

Otask(returns=list)

Qtask (v=INOUT)

def append_three_ones(v):
v += [1, 1, 1]

@local
def scale_vector(v, k):
return [k*x for x in v]

if __name__=='__main_
v = [1,2,3]
append_three_ones(v)

# v 1is automatically synchronized when calling the scale_vector function.

w = scale_vector(v, 2)

4.2.1.10 Exceptions

COMPSs is able to deal with exceptions raised during the execution of the applications. In this case, if a

user/python defined exception happens, the user can choose the task behaviour using the on_ failure argument
within the @task decorator (with four possible values: ‘RETRY’, 'CANCEL_SUCCESSORS’, "FAIL’ and
"IGNORE’. 'RETRY" is the default behaviour).

However, COMPSs provides an exception (COMPSsException) that the user can raise when necessary and can
be catched in the main code for user defined behaviour management (Code 57). This mechanism avoids any
synchronization, and enables applications to react under particular circunstances.

Code 57: COMPSs Exception example

from pycompss.api.task import task
from pycompss.api.exceptions import COMPSsException

@task()
def func():

raise COMPSsException("Something happened!")

if __name__=='__main_
try:
func ()
except COMPSsException:
# React to the exception (maybe calling other tasks or with other parameters)

In addition, the COMPSsFException can be combined with task groups, so that the tasks which belong to the group
will also be cancelled as soon as the COMPSsEzception is raised (Code 58)

4.2. Python Binding 79




COMPSs Documentation, 2.7

Code 58: COMPSs Exception with task group example

from pycompss.api.task import task
from pycompss.api.exceptions import COMPSsException
from pycompss.api.api import TaskGroup

@task()
def func(v):

if v ==
raise COMPSsException("8 found!")

if __name__=='__main__":
try:
with TaskGroup('exceptionGroupl'):
for i in range(10):
func (i)
except COMPSsException:
# React to the ezception (maybe calling other tasks or with other parameters)

4.2.2 Application Execution

The next subsections describe how to execute applications with the COMPSs Python binding.

4.2.2.1 Environment

The following environment variables must be defined before executing a COMPSs Python application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

4.2.2.2 Command

In order to run a Python application with COMPSs, the runcompss script can be used, like for Java and C/C-+-+
applications. An example of an invocation of the script is:

compss@bsc:~$ runcompss \
--lang=python \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg?2

Or alternatively, use the pycompss module:

compss@bsc:~$ python -m pycompss \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Tip: The runcompss command is able to detect the application language. Consequently, the --lang=python is
not mandatory.

Tip: The --pythonpath flag enables the user to add directories to the PYTHONPATH environment variable and
export them into the workers, so that the tasks can resolve successfully its imports.

80 Chapter 4. Application development




COMPSs Documentation, 2.7

For full description about the options available for the runcompss command please check the Executing COMPSs
applications Section.

4.2.3 Integration with Jupyter notebook

PyCOMPSs can also be used within Jupyter notebooks. This feature allows users to develop and run their
PyCOMPSs applications in a Jupyter notebook, where it is possible to modify the code during the execution and
experience an interactive behaviour.

4.2.3.1 Environment Variables

The following libraries must be present in the appropiate environment variables in order to enable PyCOMPSs
within Jupyter notebook:

PYTHONPATH The path where PyCOMPSs is installed (e.g. /opt/COMPSs/Bindings/python/). Please, note
that the path contains the folder 2 and/or 3. This is due to the fact that PyCOMPSs is able to choose the
appropiate one depending on the kernel used with jupyter.

LD LIBRARY PATH The path where the libbindings-commons.so library is located (e.g. <COMPSS_-
INSTALLATION_PATH>/Bindings/bindings-common/1ib/) and the path where the 1ibjvm.so library is lo-
cated (e.g. /usr/lib/jvm/java-8-openjdk/jre/lib/amd64/server/).

4.2.3.2 API calls

In this case, the user is responsible of starting and stopping the COMPSs runtime during the jupyter notebook
execution. To this end, PyCOMPSs provides a module with two main API calls: one for starting the COMPSs
runtime, and another for stopping it.

This module can be imported from the pycompss library:

import pycompss.interactive as ipycompss

And contains two main functions: start and stop. These functions can then be invoked as follows for the COMPSs
runtime deployment with default parameters:

# Previous user code/cells

ipycompss.start ()

# User code/cells that can benefit from PyCOMPSs
ipycompss.stop()

# Subsequent code/cells

Between the start and stop function calls, the user can write its own python code including PyCOMPSs imports,
decorators and synchronization calls described in the Programming Model Section. The code can be splitted into
multiple cells.

The start and stop functions accept parameters in order to customize the COMPSs runtime (such as the flags
that can be selected with the runcompss command). Table 12 summarizes the accepted parameters of the start
function. Table 13 summarizes the accepted parameters of the stop function.

Parameter Name Parameter Type | Description

log level String Log level Options: "off", "info" and "debug". (Default: "off")
debug Boolean COMPSs runtime debug (Default: False) (overrides log level)

o c Boolean Object conversion to string when possible (Default: False)

4.2. Python Binding 81



COMPSs Documentation, 2.7

Parameter Name Parameter Type | Description

graph Boolean Task dependency graph generation (Default: False)

trace Boolean Paraver trace generation (Default: False)

monitor Integer Monitor refresh rate (Default: None - Monitoring disabled)

project xml String Path to the project XML file (Default: "$COMPSS/Runtime/configur:
resources_ xml String Path to the resources XML file (Default: "$COMPSs/Runtime/configt
summary Boolean Show summary at the end of the execution (Default: False)

storage impl String Path to an storage implementation (Default: None)

storage conf String Storage configuration file path (Default: None)

task count Integer Number of task definitions (Default: 50)

app_name String Application name (Default: "Interactive")

uuid String Application uuid (Default: None - Will be random)

base log dir String Base directory to store COMPSs log files (a .COMPSs/ folder will be
specific_log dir String Use a specific directory to store COMPSs log files (the folder MUST e
extrae cfg String Sets a custom extrae config file. Must be in a shared disk between all
comm String Class that implements the adaptor for communications. Supported ad
conn String Class that implements the runtime connector for the cloud. Supportec
master _name String Hostname of the node to run the COMPSs master (Default: "")
master port String Port to run the COMPSs master communications (Only for NIO adap
scheduler String Class that implements the Scheduler for COMPSs. Supported schedul
jvm_ workers String Extra options for the COMPSs Workers JVMs. Each option separed 1
cpu_ affinity String Sets the CPU affinity for the workers. Supported options: "disabled!
gpu_ affinity String Sets the GPU affinity for the workers. Supported options: "disabled
profile input String Path to the file which stores the input application profile (Default: ""
profile output String Path to the file to store the application profile at the end of the execu
scheduler config String Path to the file which contains the scheduler configuration (Default: "
external adaptation Boolean Enable external adaptation (this option will disable the Resource Opt
propatage virtual environment | Boolean Propagate the master virtual environment to the workers (Default: Fa
verbose Boolean Verbose mode (Default: False)

Table 13: PyCOMPSs stop function for Jupyter notebook

Parameter Name

Parameter Type

Description

sync Boolean

Synchronize the objects left on the user scope. (Default: False)

The following code snippet shows how to start a COMPSs runtime with tracing and graph generation enabled (with
trace and graph parameters), as well as enabling the monitor with a refresh rate of 2 seconds (with the monitor
parameter). It also synchronizes all remaining objects in the scope with the sync parameter when invoking the

stop function.

# Previous user code

ipycompss.start (graph=True, trace=True, monitor=2000)

# User code that can benefit from
ipycompss.stop(sync=True)

# Subsequent code

PyCOMPSs

82

Chapter 4. Application development



COMPSs Documentation, 2.7

4.2.3.3 Notebook execution

The application can be executed as a common Jupyter notebook by steps or the whole application.

Attention: Once the COMPSs runtime has been stopped it is NECESSARY to restart the python
kernel in Jupyter before starting another COMPSs runtime.

To this end, click on “Kernel” and “Restart” (or “Restart & Clear Output” or “Restart & Run All”, depending
on the need).

4.2.3.4 Notebook example

Sample notebooks can be found in the PyCOMPSs Notebooks Section.

4.2.4 Integration with Numba
PyCOMPSs can also be used with Numba. Numba (http://numba.pydata.org/) is an Open Source JIT compiler

for Python which provides a set of decorators and functionalities to translate Python functios to optimized machine
code.

4.2.4.1 Basic usage

PyCOMPSs’ tasks can be decorated with Numba’s @jit/@njit decorator (with the appropiate parameters) just
below the @task decorator in order to apply Numba to that task.

from pycompss.api.task import task # Import @task decorator
from numba import jit

Q@task(returns=1)
@jit )
def numba_func(a, b):

The task will be optimized by Numba within the worker node, enabling COMPSs to use the most efficient imple-
mentation of the task (and exploiting the compilation cache — any task that has already been compiled does not
need to be recompiled in subsequent invocations).

4.2.4.2 Advanced usage

PyCOMPSs can be also used in conjuntion with the Numba’s @vectorize, @guvectorize, @stencil and @cfunc.
But since these decorators do not preserve the original argument specification of the original function, their usage
is done through the numba parameter withih the @task decorator. The numba parameter accepts:

e Boolean: True: Applies jit to the function.
e Dictionary{k, v}: Applies jit with the dictionary parameters to the function (allows to specify specific jit
parameters (e.g.*nopython=True*)).
e String:
— ‘§it” Applies jit to the function.
— “njit”: Applies jit with nopython=True to the function.
— “generated jit™: Applies generated jit to the function.
— “vectorize”: Applies vectorize to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the vectorize signature.
— “guvectorize’”: Applies guvectorize to the function. Needs some extra flags in the @task decorator:
* numba_ signature: String with the guvectorize signature.
x numba_ declaration: String with the guvectorize declaration.

4.2. Python Binding 83



http://numba.pydata.org/

COMPSs Documentation, 2.7

— “stencil” Applies stencil to the function.
— “cfunc™ Applies cfunc to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the cfunc signature.

Moreover, the @task decorator also allows to define specific flags for the jit, njit, generated_ jit, vectorize, guvectorize
and cfunc functionalities with the numba_ flags hint. This hint is used to declare a dictionary with the flags expected
to use with these numba functionalities. The default flag included by PyCOMPSs is the cache=True in order to
exploit the function caching of Numba across tasks.

For example, to apply Numba jit to a task:

from pycompss.api.task import task

Qtask(numba='jit') # Aternatively: @task(numba=True)
def jit_func(a, b):

And if the developer wants to use specific flags with jit (e.g. parallel=True), the numba_ flags must be defined
with a dictionary where the key is the numba flag name, and the value, the numba flag value to use):

from pycompss.api.task import task

Otask(numba='jit', numba_flags={'parallel':True})
def jit_func(a, b):

Other Numba’s functionalities require the specification of the function signature and declaration. In the next
example a task that will use the vectorize with three parameters and a specific flag to target the cpu is shown:

from pycompss.api.task import task

Otask(returns=1,
numba="'vectorize',
numba_signature=['float32(float32, float32, float32)'],
numba_flags={'target':'cpu'})
def vectorize_task(a, b, c):
return a * b * ¢

Details about numba and the specification of the signature, declaration and flags can be found in the Numba’s
webpage (http://numba.pydata.org/).

4.3 C/C++ Binding

COMPSs provides a binding for C and C++ applications. The new C++ version in the current release comes with
support for objects as task parameters and the use of class methods as tasks.

4.3.1 Programming Model

As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -
name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

84 Chapter 4. Application development



http://numba.pydata.org/

COMPSs Documentation, 2.7

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 59: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);

void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
};

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C++ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name ( parameter {, parameter }* );
return-type = "void" | type
ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction = "in" | "out" | "inout"

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |
"char[<size>]" | "int[<size>]" | "short[<size>]" | "long[<size>]" |
"float [<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

Main Program
The following code shows an example of matrix multiplication written in C++.

Code 60: Matrix multiplication

#ainclude "Matmul.h"
#include "Matriz.h"
#ainclude "Block.h"
int N; //MSIZE
int M; //BSIZE
double val;
int main(int argc, char **argv)
{
Matrix A;
Matrix B;
Matrix C;

(continues on next page)

4.3. C/C++ Binding 85




COMPSs Documentation, 2.7

(continued from previous page)

N = atoi(argv[1]);
M = atoi(argv[2]);
val = atof(argv[3]);
compss_on();

A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);
initMatrix(&C,N,M,0.0);

cout << "Waiting for initialization...\n";

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply(A, B);

compss_off () ;
return 0;

The developer has to take into account the following rules:

1. A header file with the same name as the main file must be included, in this case Matmul.h. This header
file is automatically generated by the binding and it contains other includes and type-definitions that are
required.

A call to the compss__on binding function is required to turn on the COMPSs runtime.

3. Asin C language, out or inout parameters should be passed by reference by means of the “&” operator before
the parameter name.

4. Synchronization on a parameter can be done calling the compss _wait __on binding function. The argument
of this function must be the variable or object we want to synchronize.

5. There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

6. A call to the compss _off binding function is required to turn off the COMPSs runtime.

o

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#ainclude "Matmul.h"
#ainclude "Matriz.h"
#1include "Block.h"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
*matrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

86 Chapter 4. Application development




COMPSs Documentation, 2.7

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

The following sections provide a more detailed view of the C++ Binding. It will include the available API calls,
how to deal with objects and having tasks as method objects as well as how to define constraints and task versions.

4.3.1.1 Binding API

Besides the aforementioned compss on, compss off and compss wait on functions, the C/C++ main
program can make use of a variety of other API calls to better manage the synchronization of data generated by
tasks. These calls are as follows:

void compss_ifstream(char * filename, ifstream™ & * ifs) Given an uninitialized input stream ifs and a
file filename, this function will synchronize the content of the file and initialize ifs to read from it.

void compss ofstream(char * filename, ofstream™ & * ofs) Behaves the same way as compss_ ifstream,
but in this case the opened stream is an output stream, meaning it will be used to write to the file.

FILE* compss_fopen(char * file name, char * mode) Similar to the C/C++ fopen call. Synchronizes
with the last version of file file. name and returns the FILE* pointer to further reference it. As the mode
parameter it takes the same that can be used in fopen (r, w, a, r+, w+ and a+).

void compss _wait _on(T** & * obj) or T compss_wait _on(T* & * obj) Synchronizes for the last ver-
sion of obJect obj, meaning that the execution will stop until the value of obj up to that point of the code is
received (and thus all tasks that can modify it have ended).

void compss delete file(char * file name) Makes an asynchronous delete of file filename. When all previ-
ous tasks have finished updating the file, it is deleted.

void compss_delete object(T** & * ObJ) Makes an asynchronous delete of an object. When all previous
tasks have finished updating the object, it is deleted.

void compss _barrier() Similarly to the Python binding, performs an explicit synchronization without a return.
When a compss_ barrier is encountered, the execution will not continue until all the tasks submitted before
the compss_ barrier have finished.

4.3.1.2 Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#ainclude "Matriz.h"
#ainclude "Block.h"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
*matrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

4.3. C/C++ Binding 87




COMPSs Documentation, 2.7

4.3.1.3 Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

4.3.1.4 Class Serialization

In case of using an object as method parameter, as callee or as return of a call to a function, the object has to be
serialized. The serialization method has to be provided inline in the header file of the object’s class by means of
the “boost” library. The next listing contains an example of serialization for two objects of the Block class.

#ifndef BLOCK_H
#define BLOCK_H

#ainclude <vector>

#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#ainclude <boost/sertalization/serialization. hpp>
#include <boost/serialization/access.hpp>
#include <boost/serialization/vector.hpp>

using namespace std;
using namespace boost;
using namespace serialization;

class Block {

public:
Block O {};
Block(int bSize);
static Block *init(int bSize, double initVal);
void multiply(Block blockl, Block block2);
void print();

private:
int M;
std: :vector< std::vector< double > > data;

friend class::serialization::access;

template<class Archive>

void serialize(Archive & ar, const unsigned int version) {
ar & M;
ar & data;

3
#endif

For more information about serialization using “boost” visit the related documentation at www.boost.org
<www.boost.org>.

88 Chapter 4. Application development




COMPSs Documentation, 2.7

4.3.1.5 Method - Task

A task can be a C++ class method. A method can return a value, modify the this object, or modify a parameter.

If the method has a return value there will be an implicit synchronization before exit the method, but for the this
object and parameters the synchronization can be done later after the method has finished.

This is because the this object and the parameters can be accessed inside and outside the method, but for the
variable where the returned value is copied to, it can’t be known inside the method.

#1include "Block.h"

Block: :Block(int bSize) {
M = bSize;
data.resize(M);
for (int i=0; i<M; i++) {
datali] .resize(M);
}
}

Block *Block::init(int bSize, double initVal) {
Block *block = new Block(bSize);
for (int i=0; i<bSize; i++) {
for (int j=0; j<bSize; j++) {
block->datal[i] [j] = initVal;
}
}

return block;

#1fdef COMPSS_WORKER

void Block::multiply(Block blockl, Block block2) {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
for (int k=0; k<M; k++) {
data[i] [j] += blockl.datal[i] [k] * block2.datalk][j];
}
}
}
this->print();

#endaf

void Block::print() {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
cout << datal[i][j] << " ";
}

cout << "\r\n";

4.3. C/C++ Binding 89




COMPSs Documentation, 2.7

4.3.1.6 Task Constraints

The C/C++ binding also supports the definition of task constraints. The task definition specified in the IDL
file must be decorated/annotated with the @Constraints. Below, you can find and example of how to define a
task with a constraint of using 4 cores. The list of constraints which can be defined for a task can be found in
Section [sec:Constraints]

interface Matmul

{
@Constraints(ComputingUnits = 4)
void multiplyBlocks(inout Block blockl,
in Block block2,
in Block block3);
+;

4.3.1.7 Task Versions

Another COMPSs functionality supported in the C/C++ binding is the definition of different versions for a
tasks. The following code shows an IDL file where a function has two implementations, with their corresponding
constraints. It show an example where the multiplyBlocks GPU is defined as a implementation of multiplyBlocks
using the annotation/decoration @Implements. It also shows how to set a processor constraint which requires a
GPU processor and a CPU core for managing the offloading of the computation to the GPU.

interface Matmul
{
Q@Constraints (ComputingUnits=4);
void multiplyBlocks(inout Block blockl,
in Block block2,
in Block block3);

// GPU implementation
Q@Constraints(processors={
@Processor (ProcessorType=CPU, ComputingUnits=1)1});
@Processor (ProcessorType=GPU, ComputingUnits=1)});
Q@Implements (multiplyBlocks) ;
void multiplyBlocks_GPU(inout Block blockl,
in Block block2,
in Block block3);

20 Chapter 4. Application development




COMPSs Documentation, 2.7

4.3.2 Use of programming models inside tasks

To improve COMPSs performance in some cases, C/C++ binding offers the possibility to use programming models
inside tasks. This feature allows the user to exploit the potential parallelism in their application’s tasks.

4.3.2.1 OmpSs

COMPSs C/C++ binding supports the use of the programming model OmpSs. To use OmpSs inside COMPSs tasks
we have to annotate the implemented tasks. The implementation of tasks was described in section [sec:functionsfile].
The following code shows a COMPSs C/C++ task without the use of OmpSs.

void compss_task(int* a, int N) {

int i;

for (i = 0; i < N; ++i) {
alil = i;

}

}

This code will assign to every array element its position in it. A possible use of OmpSs is the following.

void compss_task(int* a, int N) {
int i;
for (i = 0; i < N; ++1i) {
#pragma omp task
{
alil = i;
}
}
}

This will result in the parallelization of the array initialization, of course this can be applied to more complex
implementations and the directives offered by OmpSs are much more. You can find the documentation and
specification in https://pm.bsc.es/ompss.

There’s also the possibility to use a newer version of the OmpSs programming model which introduces significant
improvements, OmpSs-2. The changes at user level are minimal, the following image shows the array initialization
using OmpSs-2.

void compss_task(int* a, int N) {
int i;

for (i = 0; i < N; ++i) {
#pragma oss task

{
ali] = 1i;

}

}

Documentation and specification of OmpSs-2 can be found in https://pm.bsc.es/ompss-2.

4.3. C/C++ Binding 91



https://pm.bsc.es/ompss
https://pm.bsc.es/ompss-2

COMPSs Documentation, 2.7

4.3.3 Application Compilation

To compile user’s applications with the C/C++ binding two commands are used: The “compss build _app’
command allows to compile applications for a single architecture, and the “compss _build _app multi arch”
command for multiple architectures. Both commands must be executed in the directory of the main application
code.

4.3.3.1 Single architecture

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul_objects> compss_build_app Matmul

[ INFO ] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//jre/1lib/
—amd64/server

[ INFO ] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.o
g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o Matrix.o
ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

In order to build an application for a different architecture e.g. armhf, an environment must be provided, indicating
the compiler used to cross-compile, and also the location of some COMPSs dependencies such as java or boost
which must be compliant with the target architecture. This environment is passed by flags and arguments;

Please note that to use cross compilation features and multiple architecture builds, you need to do the proper
installation of COMPSs, find more information in the builders README.

$~/matmul_objects> compss_build_app --cross-compile --cross-compile-prefix=arm-linux-gnueabihf- --java_
—home=/usr/1ib/jvm/java-1.8.0-openjdk-armhf Matmul

[ INFO ] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-armhf/jre/lib/arm/
—server

[ INFO ] Boost libraries are searched in the directory: /usr/lib/

[ INFO ] You enabled cross-compile and the prefix to be used is: arm-linux-gnueabihf-

[ INFO ] The target host is: arm-linux-gnueabihf

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

(continues on next page)

92 Chapter 4. Application development




COMPSs Documentation, 2.7

(continued from previous page)

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.o
g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o Matrix.o
ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

[The previous outputs have been cut for simplicity]

The —cross-compile flag is used to indicate the users desire to cross-compile the application. It enables the use of
—cross-compile-prefix flag to define the prefix for the cross-compiler. Setting $CROSS COMPILE environment
variable will also work (in case you use the environment variable, the prefix passed by arguments is overrided
with the variable value). This prefix is added to §CC and $CXX to be used by the user Makefile and lastly
by the GNU toolchain . Regarding java and boost, —java home and —boostlib flags are used respectively. In
this case, users can also use teh $JAVA HOME and $BOOST LIB variables to indicate the java and boost for
the target architecture. Note that these last arguments are purely for linkage, where $LD LIBRARY PATH is
used by Uniz/Linuz systems to find libraries, so feel free to use it if you want to avoid passing some environment
arguments.

4.3.3.2 Multiple architectures

The user command “compss _build app multi arch” allows a to compile an application for several archi-
tectures. Users are able to compile both master and worker for one or more architectures. Environments for the
target architectures are defined in a file specified by *c*fg flag. Imagine you wish to build your application to
run the master in your Intel-based machine and the worker also in your native machine and in an ARM-based
machine, without this command you would have to execute several times the command for a single architecture
using its cross compile features. With the multiple architecture command is done in the following way.

$~/matmul_objects> compss_build_app_multi_arch --master=x86_64-linux-gnu --worker=arm-linux-gnueabihf,
—x86_64-1linux-gnu Matmul

[ INFO ] Using default configuration file: /opt/COMPSs/Bindings/c/cfgs/compssrc.

[ INFO ] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64/jre/lib/
—amd64/server

[ INFO ] Boost libraries are searched in the directory: /usr/lib/

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.o
g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o Matrix.o
ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The master for x86_64-linux-gnu compiled successfuly

(continues on next page)

4.3. C/C++ Binding 93




COMPSs Documentation, 2.7

(continued from previous page)

[ INFO ] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-armhf/jre/lib/arm/
—server
[ INFO ] Boost libraries are searched in the directory: /opt/install-arm/libboost

Building application for master...

arm-linux-gnueabihf-g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

arm-linux-gnueabihf-g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.ccy
—-0 Block.o

arm-linux-gnueabihf-g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.
—cc -o Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The worker for arm-linux-gnueabihf compiled successfuly

[ INFO ] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64/jre/lib/
—amd64/server
[ INFO ] Boost libraries are searched in the directory: /usr/lib/

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.o
g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o Matrix.o
ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The worker for x86_64-linux-gnu compiled successfuly

[The previous output has been cut for simplicity/

Building for single architectures would lead to a directory structure quite different than the one obtained using
the script for multiple architectures. In the single architecture case, only one master and one worker directories
are expected. In the multiple architectures case, one master and one worker is expected per architecture.

| -- arm-linux-gnueabihf

| “-- worker

| “-- gsbuild

| “-- automdte.cache
|-- src

| -- x86_64-1linux-gnu

| |-- master

| |  ~-- gsbuild

(continues on next page)

94 Chapter 4. Application development




COMPSs Documentation, 2.7

(continued from previous page)

| “-- automédte.cache
T -- worker
"-- gsbuild

-- automdte.cache

f —— — —

-- xml

(Note than only directories are shown).

4.3.3.3 Using OmpSs

As described in section [sec:ompss| applications can use OmpSs and OmpSs-2 programming models. The compila-
tion process differs a little bit compared with a normal COMPSs C/C++ application. Applications using OmpSs
must be compiled using the --ompss option in the compss build app command.

$~/matmul_objects> compss_build_app --ompss Matmul

Executing the previous command will start the compilation of the application. Sometimes due to configuration
issues OmpSs can not be found, the option --with_ompss=/path/to/ompss specifies the OmpSs path that the
user wants to use in the compilation.

Applications using OmpSs-2 are similarly compiled. The options to compile with OmpSs-2 are --ompss-2 and
--with_ompss-2=/path/to/ompss-2

$~/matmul_objects> compss_build_app --with_ompss-2=/home/mdomingu/ompss-2 --ompss-2 Matmul

Remember that additional source files can be used in COMPSs C/C-+-+ applications, if the user expects OmpSs or
OmpSs-2 to be used in those files she, must be sure that the files are properly compiled with OmpSs or OmpSs-2.

4.3.4 Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “~worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

4.3.5 Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/ . COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

4.3. C/C++ Binding 95




COMPSs Documentation, 2.7

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

N = 3, Matrix size
M = 4, Block size

066¢

Parallel tasks
[3x3] Matrix = 9 blocks

Each block
accumulates 3
[4x4] matrix
multiplications

Implicit
synchronization

Explicit
synchronizations

Figure 6: Matmul Execution Graph.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of
function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-
cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

4.4 Constraints

This section provides a detailed information about all the supported constraints by the COMPSs runtime for Java,
Python and C/C++ languages. The constraints are defined as key-value pairs, where the key is the name of
the constraint. Table 14 details the available constraints names for Java, Python and C/C++, its value type, its
default value and a brief description.

96 Chapter 4. Application development



COMPSs Documentation,

2.7

Table 14: Arguments of the @constraint decorator

Java Python C/C++ Value type Default value Description
computingUnits | computing - ComputingUnits | <string> “1” Required num-
units ber of comput-
ing units
processorName | processor - ProcessorName | <string> “lunassigned|” Required pro-
name cessor name
processorSpeed | processor - ProcessorSpeed | <string> “[unassigned]” Required  pro-
speed cessor speed
processorArchiteqtecessor _ar- ProcessorArchite¢twistring> “[unassigned|” Required pro-
chitecture cessor architec-
ture
processorType processor _type | ProcessorType <string> “[unassigned|” Required pro-
cessor type
processorPropertyNanwessor - ProcessorProperty Nastiréng > “|unassigned|” Required pro-
property name cessor property
processorProperty Valeessor - ProcessorProperty Vedtrang > “[unassigned]” Required pro-
property value cessor property
value
processorInternalMpronoegSize in- ProcessorInternalMentomygize “[unassigned]” Required inter-
ternal mem- nal device mem-
ory _size ory
processors processors R List<@Processor“{}” Required  pro-
cessors  (check
Table 15 for
Processor  de-
tails)
memorySize memory _size MemorySize <string> “[unassigned]” Required mem-
ory size in GBs
memoryType memory _type MemoryType <string> “[unassigned|” Required
memory
type  (SRAM,
DRAM, etc.)
storageSize storage _size StorageSize <string> “[unassigned|” Required stor-
age size in
GBs
storageType storage type StorageType <string> “[unassigned|” Required stor-
age type (HDD,
SSD, etc.)
operatingSystemTyprerating sys- | OperatingSystem|[[ygséring > “[unassigned|” Required  op-
tem_type erating system
type (Windows,
MacOS, Linux,
etc.)
operatingSystemDistrébatting sys- | OperatingSystemDisstilmgion “[unassigned]” Required  op-
tem distribu- erating system
tion distribution
(XP, Sierra,
openSUSE,
etc.)
operatingSystemVeogierating _sys- OperatingSystemVerstoing > “[unassigned|” Required  op-
tem_version erating system
version
wallClockLimit | wall clock - WallClockLimit | <string> “lunassigned|” Maximum wall
limit clock time
hostQueues host _queues HostQueues <string> “[unassigned]” Required
queues
appSoftware app_ software AppSoftware <string> “[unassigned|” Required  ap-

4.4. Constraints

D

plications thalé
must be avail-
able within the
remote node for
the task




COMPSs Documentation,

2.7

All constraints are defined with a simple value except the HostQueue and AppSoftware constraints, which allow
multiple values.

The processors constraint allows the users to define multiple processors for a task execution. This constraint is
specified as a list of @Processor annotations that must be defined as shown in Table 15

Table 15: Arguments of the @Processor decorator

Annotation Value type | Default value | Description

processorType <string> “CpU” Required processor type (e.g. CPU or GPU)
computingUnits <string> “1” Required number of computing units

name <string> “|unassigned|” | Required processor name

speed <string> “lunassigned|” | Required processor speed

architecture <string> “lunassigned|” | Required processor architecture
propertyName <string> “[unassigned|” | Required processor property

propertyValue <string> “|unassigned]” | Required processor property value
internalMemorySize | <string> “[unassigned|” | Required internal device memory

98

Chapter 4. Application development



Chapter 5

Execution Environments

This section is intended to show how to execute the COMPSs applications.

5.1 Local

This section is intended to walk you through the COMPSs usage in local machines.

5.1.1 Executing COMPSs applications

5.1.1.1 Prerequisites
Prerequisites vary depending on the application’s code language: for Java applications the users need to have a jar

archive containing all the application classes, for Python applications there are no requirements and for C/C+-+
applications the code must have been previously compiled by using the buildapp command.

For further information about how to develop COMPSs applications please refer to Application development.

5.1.1.2 Runcompss command

COMPSs applications are executed using the runcompss command:

compss@bsc:~$ runcompss [options] application_name [application_arguments]

The application name must be the fully qualified name of the application in Java, the path to the .py file containing
the main program in Python and the path to the master binary in C/C++.

The application arguments are the ones passed as command line to main application. This parameter can be
empty.

The runcompss command allows the users to customize a COMPSs execution by specifying different options. For
clarity purposes, parameters are grouped in Runtime configuration, Tools enablers and Advanced options.

compss@bsc:~$ runcompss -h
Usage: /opt/COMPSs/Runtime/scripts/user/runcompss [options] application_name application_arguments

* Options:

General:
--help, -h Print this help message
--opts Show available options

(continues on next page)

99



COMPSs Documentation, 2.7

(continued from previous page)

--version, -v

Tools enablers:
--graph=<bool>, --graph, -g

--tracing=<level>, --tracing, -t

Print COMPSs version

Generation of the complete graph (true/false)

When no value is provided it is set to true

Default: false

Set generation of traces and/or tracing level ( [ true |

—basic ] | advanced | scorep | arm-map | arm-ddt | false)

--monitoring=<int>, --monitoring, -m

--external_debugger=<int>,
--external_debugger
—(or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

—pypath and classpath. See Runtime/storage

--storage_conf=<path>
--project=<path>

—default_project.xml
--resources=<path>

—default_resources.xml
--lang=<name>

--summary
—application execution

--log_level=<level>, --debug, -d
—asserts and __debug__
Advanced options:
--extrae_config_file=<path>

—between all COMPSs workers.

--trace_label=<string>
—case of tracing is activated.

--comm=<ClassName>

--conn=<className>

True and basic levels will produce the same traces.
When no value is provided it is set to 1

Default: O

Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

Enables external debugger connection on the specified port,

Default: false
Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut to setting,
in your installation folder.
Path to the storage configuration file
Default: null
Path to the project XML file
Default: /opt/COMPSs//Runtime/configuration/xml/projects/

Path to the resources XML file
Default: /opt/COMPSs//Runtime/configuration/xml/resources/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java
Displays a task execution summary at the end of the

Default: false
Set the debug level: off | info | debug
Warning: 0ff level compiles with -02 option disabling,

Default: off

Sets a custom extrae config file. Must be in a shared disk,

Default: null
Add a label in the generated trace file. Only used in they

Default: None
Class that implements the adaptor for communications
Supported adaptors:
t:: es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor
Default: es.bsc.compss.nio.master.NIOAdaptor
Class that implements the runtime connector for the cloud
Supported connectors:
t:: es.bsc.compss.connectors.DefaultSSHConnector
es.bsc.compss.connectors.DefaultNoSSHConnector
Default: es.bsc.compss.connectors.DefaultSSHConnector

(continues on next page)

100

Chapter 5. Execution Environments




COMPSs Documentation, 2.7

(continued from previous page)

--streaming=<type>

——streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

—LoadBalancingScheduler

—LoadBalancingScheduler
--scheduler_config file=<path>

--library_path=<path>

Enable the streaming mode for the given type.

Supported types: FILES, 0BJECTS, PSCOS, ALL, NONE

Default: NONE

Use an specific streaming master node name.

Default: null

Use an specific port for the streaming master.

Default: null

Class that implements the Scheduler for COMPSs

Supported schedulers:
es.bsc.compss.scheduler.data.DataScheduler
es.bsc.compss.scheduler.fifo.FIFOScheduler
es.bsc.compss.scheduler.fifodata.FIFODataScheduler
es.bsc.compss.scheduler.lifo.LIFOScheduler
es.bsc.compss.components.impl.TaskScheduler
es.bsc.compss.scheduler.loadbalancing.

Default: es.bsc.compss.scheduler.loadbalancing.
Path to the file which contains the scheduler configuration.

Default: Empty
Non-standard directories to search for libraries (e.g. Javay,

—JVM library, Python library, C binding library)

--classpath=<path>
--appdir=<path>

—source
--pythonpath=<path>

—ssource
--base_log_dir=<path>

—will be created inside this location)
--specific_log_dir=<path>

< sandbox is created)
--uuid=<int>

--master_name=<string>

--master_port=<int>

--jvm_master_opts="<string>"

Default: Working Directory

Path for the application classes / modules

Default: Working Directory

Path for the application class folder.

Default: /home/user/gitlab/documentation/COMPSs_Manuals/

Additional folders or paths to add to the PYTHONPATH
Default: /home/user/gitlab/documentation/COMPSs_Manuals/

Base directory to store COMPSs log files (a .COMPSs/ foldery

Default: User home
Use a specific directory to store COMPSs log files (noy

Warning: Overwrites --base_log_dir option

Default: Disabled

Preset an application UUID

Default: Automatic random generation

Hostname of the node to run the COMPSs master

Default:

Port to run the COMPSs master communications.

Only for NIO adaptor

Default: [43000,44000]

Extra options for the COMPSs Master JVM. Each option separed

—by "," and without blank spaces (Notice the quotes)

--jvm_workers_opts="<string>"
—separed by "," and without blank spaces

--cpu_affinity="<string>"

—the form "0-8/9,10,11/12-14,15,16"
--gpu_affinity="<string>"

—the form "0-8/9,10,11/12-14,15,16"

--fpga_affinity="<string>"

" /405 M

Default:
Extra options for the COMPSs Workers JVMs. Each optiong

(Notice the quotes)

Default: -Xms1024m,-Xmx1024m,-Xmn400m
Sets the CPU affinity for the workers
Supported options: disabled, automatic, user defined map of

Default: automatic
Sets the GPU affinity for the workers
Supported options: disabled, automatic, user defined map of,

Default: automatic
Sets the FPGA affinity for the workers
Supported options: disabled, automatic, user defined map of,

dloa £ AN Q/Q 40 44 /4 40 4 4~
= ColIe IO0TYm U=07J,1U, L7/ t2=1%,10,10

(continues on next page)

5.1. Local

101




COMPSs Documentation, 2.7

(continued from previous page)

Default: automatic

--fpga_reprogram="<string>" Specify the full command that needs to be executed toy
—reprogram the FPGA with the desired bitstream. The location must be an absolute path.
Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of different,
—functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile at the end

—of the execution
Default: Empty
--PyObject_serialize=<bool> Only for Python Binding. Enable the object serialization tog
—string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent worker in c (true/
—false).
Default: false
--enable_external_adaptation=<bool> Enable external adaptation. This option will disable the
—Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--python_interpreter=<string> Python interpreter to use (python/python2/python3).

Default: python Version: 2
--python_propagate_virtual_environment=<true> Propagate the master virtual environment to they
—workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of multiprocessing.
— (true/false).
Default: false

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

5.1.1.3 Running a COMPSs application

Before running COMPSs applications the application files must be in the CLASSPATH. Thus, when launching
a COMPSs application, users can manually pre-set the CLASSPATH environment variable or can add the
--classpath option to the runcompss command.

The next three sections provide specific information for launching COMPSs applications developed in different
code languages (Java, Python and C/C-++). For clarity purposes, we will use the Simple application (developed
in Java, Python and C++) available in the COMPSs Virtual Machine or at ht